Planning Permission 08/00002/WAS – Farm Based Anaerobic Digestion (AD) Plant at Westwood, Higham Park, Rushden, Northants

Application to vary Condition 2 to allow digestate to be applied on local farmland up to 5 miles distant from the plant.

Summary of Proposal

Biogen (UK) Ltd wish to vary condition 2 of the Planning Permission to allow digestate to be applied to local farmland up to 5 miles distant from the plant rather than limited to the site’s host agricultural unit.

Background

Digestate or bio-fertiliser is produced as a consequence of treatment of food chain waste by anaerobic digestion.

Utilisation of digestate by spreading it to land is critical to the successful operation of the Biogen Westwood plant as well as being the best environmental option for dealing with food chain waste.

When the Westwood farm based anaerobic digestion project was originally conceived, it was planned that all of the bio-fertiliser produced by the plant would be used on land farmed by Biogen’s sister company Bedfordia Farms Ltd., as highlighted in examples extracted from the original planning application, which was granted consent in May 2008.

The original planning application made a number of references to the use of digestate, for example:

Environmental report, introduction 1.46 –
‘32,500 tonnes of bio-fertiliser, to be used locally on adjacent land’.

Consequently planning condition 2 of the planning permission states: ‘…….and digestate application shall be limited to the host agricultural unit’

Proposed change to planning condition and reasons

Biogen are seeking to extend the area where the digestate can be used to include the host agricultural unit and up to five miles distant on local farmland.

There are a number of reasons behind this:

1. **High production.** The Westwood plant is producing more bio-fertiliser than the volume calculated in the original process calculations, due to the high levels of nutrients in the feedstock. The plant digestate production is up to 40,000 tonnes per annum, requiring additional farmland for spreading, in excess of the area currently farmed by Bedfordia Farms Ltd.

2. **High nutrient content.** The bio-fertiliser also contains a higher nutrient content than originally envisaged, particularly Nitrogen. The surrounding local farmland is
within a Nitrate Vulnerable Zone, which means the amount of organic nitrogen fertiliser applied per hectare is limited by Defra to a maximum of 250kg/ha/year. This necessitates the need to access other farm land for disposal. This is a distinct benefit to the local farming community as it substantially helps in reducing their growing costs and reduces demand for inorganic conventional fertilisers.

3. **Cropping changes.** The decision by farmers to grow certain crops is commercially driven by market forces and physical considerations e.g. weather, soil type etc. For example: there are certain crops such as peas and beans, which do not require nitrogen fertiliser, because they encourage the production of nitrogen fixing bacteria and therefore indirectly ‘produce’ their own nitrogen. The weather is also unpredictable, and if there are particularly wet conditions in the drilling period where land is unable to be cropped in the autumn, then Spring crops will tend to dominate, which require less Nitrogen.

Due to these factors it is important to utilise the digestate to crop need, for best effect. Therefore if there are cropping changes, which reduces the volume that can be applied to certain crops, then flexibility is required to enable spreading on additional land.

4. **Market need.** Due to the success of the use of bio-fertiliser on land farmed by Bedfordia Farms Ltd, Biogen are being approached by local farmers to supply them with digestate.

There has been a significant change in the view taken by farmers of organic forms of fertiliser, which has been influenced by a number of factors: commercially organic fertilisers represent good value for money; agronomically these fertilisers work extremely well as a source of nutrients; they are much better understood as there is very good scientific information available on how they work; they produce high yields; and they are renewable so represent a environmentally responsible way of sourcing fertiliser. An example of an organics market which has expanded rapidly in the last few years is the Safe Sewage Sludge matrix, where demand is now significantly exceeding supply. Evidence from Europe indicates that the market for digestate will follow a similar path.

5. **Bio-fertiliser spreading footprint.** Market forces will dictate the distance at which the digestate is spread i.e. the further it is transported the higher the cost of disposal, and hence it becomes self regulating. The majority of the digestate will be spread close to the plant via the spreading main, with the remainder by agricultural contractors. The access route is already used by Bedfordia Farms for their farming operations. With the upgrade to the A6 access and introduction of the ghost island, it represents a significant improvement to road safety, especially for agricultural vehicles.
The Spreading Operation

It is proposed that between 24,000 and 30,000 tonnes is spread on the host agricultural unit (depending on nutrient content), for which Biogen has a commercial agreement with Bedfordia Farms Ltd. Nevertheless, Bedfordia Farms will be aiming to take as much digestate as they can, because it is in their interests to do so, as highlighted in 4. 'Market need', above. Both of these companies are part of the Bedfordia Group.

The remainder will be spread to local farmland within 5 miles of the plant either via the underground main if they are located close enough or by agricultural contractors. It is very difficult to get long term agreements with third party Farmers and therefore it is not possible to identify the actual farms where it will be spread at this stage. The bio-fertiliser will be applied twice a year during the spring (February to April) and summer (July to September) spreading periods.

Meeting Sustainability Objectives

The original feedstock (food chain waste), from which the bio-fertiliser is produced is from a renewable source and this would otherwise have gone down a disposal route, such as, landfill, which is at the bottom of the waste hierarchy.

The use of bio-fertiliser sits at the top of the waste hierarchy as waste food is treated, whilst recovering energy and subsequently re-used to grow more food for human consumption on local farmland. The Westwood plant produces sufficient bio-fertiliser to produce 8,000 tonnes of wheat per annum.

The bio-fertiliser will negate the need for approximately 600 tonnes of fossil fuel derived fertiliser being brought into the area. Fertiliser manufacture requires very high levels of energy in its manufacture, and approximately 2 tonnes of carbon is produced per tonne of fertiliser manufactured. Therefore, approximately 1,200 tonnes of Carbon are saved through the use of bio-fertiliser.

Policy Background

The existing Anaerobic Digestion plant satisfies the aspirations of European, national, regional and local waste policy in a great number of ways. The proposed variation of condition 2 of the planning permission will allow Biogen to satisfy increased demand to dispose of food waste in a way which is in accordance with these policy aspirations.

Biogen’s proposal is also consistent with the UK’s international obligations to reduce greenhouse gas emissions through measures such as the diversion of organic waste from landfill and the generation of energy from renewable sources.

For the purposes of this document we will reference the Northamptonshire County Council Minerals & Waste Development Framework Core Strategy (adopted in May 2010) and the Northamptonshire County Council Minerals & Waste Development Framework Control of Management & Development (adopted June 2010) as the most relevant policy documents in support of this application.
NCC Minerals & Waste Development Framework Core Strategy

Policy CS1 – This application supports this policy’s aims of the development of a sustainable waste management network and to meet the indicative waste management capacities for Biological processing indicated, in this instance by way of Anaerobic Digestion.

Policy CS9 – This application supports the policy’s aim to minimise transport movements by utilising an installed main network for disposal of digestate where it is possible to do so.

At Section 3 Policy Context Section 3.5 states that the key planning document for waste is PPS10 - Planning for Sustainable Waste Management (and its Companion Guide). This document establishes key principles, of particular significance is the need to drive waste management up the waste hierarchy, addressing waste as a resource, and looking to disposal as the last option but one which must be adequately catered for.

PPS10 also includes among it’s key objectives that regional and local planning bodies should:

- Help secure the recovery or disposal of waste without endangering human health and without harming the environment.
- Reflect the concerns and interests of communities, the needs of waste collection authorities, waste disposal authorities and businesses.
- Ensure the layout and design of new development supports sustainable waste management.

Anaerobic Digestion is recognised as being at the top of the waste hierarchy. This application supports the Core Strategy need to drive waste management up the waste hierarchy, and to achieve the other objectives set out above.

The ability to dispose of digestate to land in a wider area helps to underpin the viability of the plant and support use of a technology that is at the top of the waste hierarchy.

At section 3.6 it states the Government’s Waste Strategy 2007 is of particular relevance as it sets the waste management context which planning policy has to have reference to. At 3.7 it states there have been considerable policy changes since the 2000 Waste Strategy. The landfill tax escalator and the introduction of the Landfill Allowance Trading Scheme (LATS) have created sharp incentives to divert waste from landfill. Additional funding for local authorities, including through the private finance initiative (PFI), has led to a major increase in kerbside recycling facilities and new waste treatment facilities. European Directives are targeting specific sectors, including vehicles, electrical and electronic equipment and packaging. However, the aim of moving waste disposal up the waste hierarchy remains a key element.

At 3.8 it states England’s performance on waste still lags behind other European countries. The new Strategy builds on the aims of the National Waste Strategy 2000 to minimise waste and encourage the recycling, composting and recovery of waste in a number of ways:

New targets for the recycling and composting of household waste (at least 40% by
A greater focus on waste prevention, with a new target to reduce the amount of waste not reused, recycled or composted from over 22.2 million tonnes in 2000 by 29% to 15.8 million tonnes in 2010 with an aspiration to reduce it to 12.2 million tonnes in 2020; a reduction of 45%.

Plans to set new targets to reduce the amount of commercial and industrial and also construction, demolition and excavation waste going to landfill as a result of waste reduction, reuse and recycling.

Increasing the landfill tax escalator so that the standard rate of tax will increase by £8 per year from 2008 until at least 2010/2011 to give greater financial incentives to businesses to reduce, reuse and recycle waste.

This application helps achieve the national policy aim as it helps to underpin the viability of the anaerobic digestion plant.

Regional waste policy - at section 3.9 it states the Regional Plan sets a minimum target for the recycling and composting of municipal solid waste of 30% by 2010 and 50% by 2015.

3.10 states The Regional Plan is supported by the Regional Waste Strategy (RWS), which although required to be prepared is not a statutory document. It contains the following principles:

- working towards zero growth in waste by 2016, reducing the amount of waste sent to landfill, exceeding Government targets for recycling and composting to achieve levels of current best practice, and taking a flexible approach to other forms of waste recovery on the basis that technology in this area is developing very quickly.
- 3.11 states the RWS was issued in January 2006 and has been used to inform the approach to the MWDF. It identifies apportionments of the waste management capacity required for the three main waste streams by sub-region for the period until 2020. The total quantities are split into categories of recycling / composting requirement, landfill diversion, re-use and disposal. The RWS anticipates zero growth by 2016 and assume recycling rates for municipal waste in line with the Regional Plan.

This application supports the policy aspirations as set out under Regional Waste Policy particularly in relation to reducing the amount of waste sent to landfill and exceeding Government targets for recycling.

STRATEGY FOR WASTE MANAGEMENT & DISPOSAL IN NORTHAMPTONSHIRE

6.1. In order to determine the quantity and type of facilities needed to manage waste and develop a sustainable waste management network to 2026 and beyond, forecasts of how much waste is likely to be generated within Northamptonshire for both management and disposal were developed.

6.2. Government guidance recommends the development of a gradually declining medium growth profile which incorporates waste management targets. The future growth of waste arisings in Northamptonshire has therefore been identified through the application of such a profile. Municipal waste forecasts are in line with those in the Northamptonshire Joint Municipal Waste Management Strategy.

The Regional Plan sets out priorities for waste management, including an aspiration to work towards zero growth in waste at the regional level by 2016. In the particular
circumstances of Northamptonshire, which will be the fastest growing county in terms of population growth to 2026, this is not considered to be a realistic assumption. The declining growth profile used for the Core Strategy more closely reflects local circumstances (compared with the Regional Plan forecasting which applies zero growth by 2016). This will nevertheless still lead to a reduction in the growth of waste arisings to an appropriate level for the county and drive behavioural change.

6.3. Waste forecasts were used to determine the gap between current and future waste arisings, and subsequently the required additional waste management capacity. The ‘capacity gap’, simply put, is the difference between the current operational waste management capacity and the management capacity required at the end of the plan period. This capacity gap also needs to identify the different types of waste and management methods. Facilities in the county have traditionally been landfill. In comparing the estimated capacity shortfalls by waste planning authority area identified in the Regional Plan it should be noted that there is a small differential in the early years, and in latter years provision in the Core Strategy exceeds the figures in the Regional Plan. Capacity will only be taken up if it is required; this presents a more realistic future scenario given the demands placed on the Regional Plan’s Southern Sub-Area (i.e. Northamptonshire) to absorb extensive development.

6.4. Due to increasing restrictions on disposal to landfill, all waste will require treatment prior to disposal (and this treatment can involve a number of waste management methods, including sorting). The waste management capacity has been identified by management method, including recycling, biological processing, treatment and disposal. It is assumed that re-use and recycling rates will not decrease. In line with PPS10 provision of waste management capacity equivalent to at least ten years of the annual rates set out in the Regional Plan has been demonstrated. In order to facilitate improved monitoring of waste arisings and uptake of waste management capacity throughout the plan period, indicative waste management capacity has been provided at five year intervals (starting at 2005/06). The indicative future capacity requirements to achieve waste management targets suggest provision needs to be made for waste management facilities to meet the following indicative capacity gaps that will arise by 2026:

- Recycling capacity for municipal and commercial & industrial waste will need to increase by 229,000 tonnes,
- Biological processing capacity for municipal and commercial & industrial waste will need to increase by 221,000 tonnes,
- Waste management or advanced treatment capacity required to deal with the remaining waste (currently disposed of to landfill) will need to increase by 334,000 tonnes, and
- Inert recycling capacity for construction and demolition waste will need to increase by 357,000 tonnes.

It is important to note that there will still be a requirement for disposal to landfill. The total estimated disposal capacity requirement for 2026 is 709,000 tonnes.

6.8. A variety of different types and sized facilities distributed throughout the county will be required to deal appropriately with the different types of waste produced and establish a sustainable waste management network. Given the types of waste produced within Northamptonshire the following types of facilities could be used in combination to support the development of a sustainable waste management network and provide the required capacity:

- Recovery and recycling facilities (including both material recycling facilities and
secondary & recycled aggregate facilities for C&D waste),
Biological processing (including composting and anaerobic digestion),
Transfer stations (where required to support other facilities),
Waste to energy physio-chemical (such as thermal (e.g. incineration, gasification, or pyrolysis), fuel substitutes, plasma arc, and feedstock recycling / substitutes),
Bio-chemical waste treatment, and
Other waste to energy facilities and emerging technologies.

This application will enhance the viability of Anaerobic Digestion facilities to meet the need outlined above.

Safeguarding waste management and minerals related development from alternative uses

9.24. Existing waste management sites are part of the infrastructure for waste development in Northamptonshire. Depending on individual circumstances, such sites may also have the potential to increase their capacity, or be able to diversify to provide additional waste services and facilities.
9.25. Permanent sites and those with a long term temporary planning permission should therefore be safeguarded from development for non-waste management uses.

This application complies with the need for an existing waste management site to provide additional waste services, by providing the flexibility for digestate disposal over a wider area therefore underwriting the ability of the plant take and treat food chain waste.

NCC Minerals & Waste Development Framework Control & Management of Development

This application complies with and supports the following Policies:

Policy CMD1 – Development Criteria for waste management facilities.

Policy CMD2 – Development criteria for waste disposal.

This application enhances ‘the development of a sustainable waste network and facilitates delivery of Northamptonshire’s waste management capacity requirements
Summary of Proposal

Biogen (UK) Ltd wish to vary condition 2 of the Planning Permission to allow an increase in the annual throughput of food chain waste, by replacing the 4,000 tonne energy crop allocation with food chain waste and increasing the overall total annual throughput from 45,000 tonnes per annum to 49,000 tonnes per annum.

There is no requirement to carry out any physical alterations or additions to any buildings on site. The increased capacity will be dealt with using existing infrastructure.

There will only be a modest increase in vehicle deliveries of approximately 3 per day.

There will be no other discernible impact as a consequence of this change in Planning Condition.

Background

The plant was originally designed to process 41,000 tonnes of food waste and 4,000 tonnes of crops.

Planning condition 2 states….. ‘The development hereby permitted, shall not exceed a total annual throughput of 45,000 tonnes per annum, waste materials to be processed shall not exceed 41,000 tonnes per annum………’

Proposed change to planning condition and reasons

Biogen are seeking to replace the allocation for energy crops with food chain waste, and increase the total tonnage to 49,000 tonnes per annum from the current 45,000 tonnes per annum.

There are a number of reasons behind this:-

1. Customer demand. There has been a large expansion of catering food rounds, accessing a waste stream that wasn’t previously available. We are also close to securing a large Local Authority contract in the area.

2. Process improvements. Advances by Biogen in the biological process have enabled us to successfully treat additional waste through the same volume of digesters. This means that no additional external structures will be required than
was applied for with the original planning application. Noise and odour will be managed by the systems currently in place and will be subject to strict Environmental Permitting.

3. **Renewable Energy.** Additional renewable energy will be produced for transmission into the local electricity grid. This will amount to approximately 1MW/hr or 8500MWh/yr.

4. **Employment.** The increase in tonnage will require an additional full time local employee to be recruited.

5. **Vehicle movements.** There will only be a small increase in the number of additional vehicle deliveries of approximately 20% or 3 per day.

6. **Waste Hierarchy.** The overall objective of government policy on waste, as expressed in PPS10, is to protect human health and the environment by producing less waste and using it as a resource wherever possible. The hierarchical approach to waste management is reinforced as a means of achieving more sustainable waste management and of breaking the link between economic growth and the environmental impact of waste. Biogen's proposal meets these principal planning objectives as it represents an opportunity to move up the waste hierarchy from disposal to recycling with energy recovery, contributes to meeting national and European targets to divert waste from landfill, and recovers energy and produces a fertiliser from waste.

7. **Policy.** This proposal fits in with European, National, regional and local waste policy as set out below.

Policy Background

The existing Anaerobic Digestion plant satisfies the aspirations of European, national, regional and local waste policy in a great number of ways. The proposed variation of condition 2 of the planning permission will allow Biogen to satisfy increased demand to dispose of food waste in a way which is in accordance with these policy aspirations.

Biogen’s proposal is also consistent with the UK’s international obligations to reduce greenhouse gas emissions through measures such as the diversion of organic waste from landfill and the generation of energy from renewable sources.

For the purposes of this document we will reference the Northamptonshire County Council Minerals & Waste Development Framework Core Strategy (adopted in May 2010) and the Northamptonshire County Council Minerals & Waste Development Framework Control of Management & Development (adopted June 2010) as the most relevant policy documents in support of this application.

NCC Minerals & Waste Development Framework Core Strategy

Policy CS1 – This application supports this policy's aims of the development of a sustainable waste management network and to meet the indicative waste management
capacities for Biological processing indicated, in this instance by way of Anaerobic Digestion.

Policy CS9 – This application supports the policy’s aim to minimise transport movements by adding only a modest number of additional deliveries to the plant from vehicles already in transit to dispose of food waste elsewhere. This will have a negligible effect on the local road network for the significant advantage of diverting the additional tonnage from landfill and producing renewable energy and bio-fertilizer.

At Section 3 Policy Context Section 3.5 states that the key planning document for waste is PPS10 - Planning for Sustainable Waste Management (and its Companion Guide). This document establishes key principles, of particular significance is the need to drive waste management up the waste hierarchy, addressing waste as a resource, and looking to disposal as the last option but one which must be adequately catered for.

PPS10 also includes among it’s key objectives that regional and local planning bodies should:

Help secure the recovery or disposal of waste without endangering human health and without harming the environment.

Reflect the concerns and interests of communities, the needs of waste collection authorities, waste disposal authorities and businesses.

Ensure the layout and design of new development supports sustainable waste management.

Anaerobic Digestion is recognised as being at the top of the waste hierarchy. This application supports the Core Strategy need to drive waste management up the waste hierarchy, and to achieve the other objectives set out above.

At section 3.6 it states the Government’s Waste Strategy 2007 is of particular relevance as it sets the waste management context which planning policy has to have reference to. At 3.7 it states there have been considerable policy changes since the 2000 Waste Strategy. The landfill tax escalator and the introduction of the Landfill Allowance Trading Scheme (LATS) have created sharp incentives to divert waste from landfill. Additional funding for local authorities, including through the private finance initiative (PFI), has led to a major increase in kerbside recycling facilities and new waste treatment facilities. European Directives are targeting specific sectors, including vehicles, electrical and electronic equipment and packaging. However, the aim of moving waste disposal up the waste hierarchy remains a key element.

At 3.8 it states England’s performance on waste still lags behind other European countries. The new Strategy builds on the aims of the National Waste Strategy 2000 to minimise waste and encourage the recycling, composting and recovery of waste in a number of ways:

New targets for the recycling and composting of household waste (at least 40% by 2010, 45% by 2015 and 50% by 2020) and the recovery of municipal waste (53% by 2010, 67% by 2015 and 75% by 2020).

A greater focus on waste prevention, with a new target to reduce the amount of waste not reused, recycled or composted from over 22.2 million tonnes in 2000 by 29% to 15.8 million tonnes in 2010 with an aspiration to reduce it to 12.2 million...
tonnes in 2020; a reduction of 45%.

Plans to set new targets to reduce the amount of commercial and industrial and also construction, demolition and excavation waste going to landfill as a result of waste reduction, reuse and recycling.

Increasing the landfill tax escalator so that the standard rate of tax will increase by £8 per year from 2008 until at least 2010/2011 to give greater financial incentives to businesses to reduce, reuse and recycle waste.

This application helps achieve the national policy aim.

Regional waste policy - at section 3.9 it states the Regional Plan sets a minimum target for the recycling and composting of municipal solid waste of 30% by 2010 and 50% by 2015.

3.10 states The Regional Plan is supported by the Regional Waste Strategy (RWS), which although required to be prepared is not a statutory document. It contains the following principles:

working towards zero growth in waste by 2016, reducing the amount of waste sent to landfill, exceeding Government targets for recycling and composting to achieve levels of current best practice, and taking a flexible approach to other forms of waste recovery on the basis that technology in this area is developing very quickly.

3.11 states the RWS was issued in January 2006 and has been used to inform the approach to the MWDF. It identifies apportionments of the waste management capacity required for the three main waste streams by sub-region for the period until 2020. The total quantities are split into categories of recycling / composting requirement, landfill diversion, re-use and disposal. The RWS anticipates zero growth by 2016 and assume recycling rates for municipal waste in line with the Regional Plan.

This application supports the policy aspirations as set out under Regional Waste Policy particularly in relation to reducing the amount of waste sent to landfill and exceeding Government targets for recycling.

STRATEGY FOR WASTE MANAGEMENT & DISPOSAL IN NORTHAMPTONSHIRE

6.1. In order to determine the quantity and type of facilities needed to manage waste and develop a sustainable waste management network to 2026 and beyond, forecasts of how much waste is likely to be generated within Northamptonshire for both management and disposal were developed.

6.2. Government guidance recommends the development of a gradually declining medium growth profile which incorporates waste management targets. The future growth of waste arisings in Northamptonshire has therefore been identified through the application of such a profile. Municipal waste forecasts are in line with those in the Northamptonshire Joint Municipal Waste Management Strategy.

The Regional Plan sets out priorities for waste management, including an aspiration to work towards zero growth in waste at the regional level by 2016. In the particular circumstances of Northamptonshire, which will be the fastest growing county in terms of population growth to 2026, this is not considered to be a realistic assumption. The declining growth profile used for the Core Strategy more closely reflects local circumstances (compared with the Regional Plan forecasting which applies zero growth by 2016). This will nevertheless still lead to a reduction in the growth of waste arisings to an appropriate level for the county and drive behavioural change.
6.3. Waste forecasts were used to determine the gap between current and future waste arisings, and subsequently the required additional waste management capacity. The ‘capacity gap’, simply put, is the difference between the current operational waste management capacity and the management capacity required at the end of the plan period. This capacity gap also needs to identify the different types of waste and management methods. Facilities in the county have traditionally been landfill. In comparing the estimated capacity shortfalls by waste planning authority area identified in the Regional Plan it should be noted that there is a small differential in the early years, and in latter years provision in the Core Strategy exceeds the figures in the Regional Plan. Capacity will only be taken up if it is required; this presents a more realistic future scenario given the demands placed on the Regional Plan’s Southern Sub-Area (i.e. Northamptonshire) to absorb extensive development.

6.4. Due to increasing restrictions on disposal to landfill, all waste will require treatment prior to disposal (and this treatment can involve a number of waste management methods, including sorting). The waste management capacity has been identified by management method, including recycling, biological processing, treatment and disposal. It is assumed that re-use and recycling rates will not decrease. In line with PPS10 provision of waste management capacity equivalent to at least ten years of the annual rates set out in the Regional Plan has been demonstrated. In order to facilitate improved monitoring of waste arisings and uptake of waste management capacity throughout the plan period, indicative waste management capacity has been provided at five year intervals (starting at 2005/06). The indicative future capacity requirements to achieve waste management targets suggest provision needs to be made for waste management facilities to meet the following indicative capacity gaps that will arise by 2026:
- Recycling capacity for municipal and commercial & industrial waste will need to increase by 229,000 tonnes,
- Biological processing capacity for municipal and commercial & industrial waste will need to increase by 221,000 tonnes,
- Waste management or advanced treatment capacity required to deal with the remaining waste (currently disposed of to landfill) will need to increase by 334,000 tonnes, and
- Inert recycling capacity for construction and demolition waste will need to increase by 357,000 tonnes.

It is important to note that there will still be a requirement for disposal to landfill. The total estimated disposal capacity requirement for 2026 is 709,000 tonnes.

6.8. A variety of different types and sized facilities distributed throughout the county will be required to deal appropriately with the different types of waste produced and establish a sustainable waste management network. Given the types of waste produced within Northamptonshire the following types of facilities could be used in combination to support the development of a sustainable waste management network and provide the required capacity:
- Recovery and recycling facilities (including both material recycling facilities and secondary & recycled aggregate facilities for C&D waste),
- Biological processing (including composting and anaerobic digestion),
- Transfer stations (where required to support other facilities),
- Waste to energy physio-chemical (such as thermal (e.g. incineration, gasification, or pyrolysis), fuel substitutes, plasma arc, and feedstock recycling / substitutes),
- Bio-chemical waste treatment, and
Other waste to energy facilities and emerging technologies.

This application will enhance the provision of Anaerobic Digestion facilities to meet the need outlined above.

Safeguarding waste management and minerals related development from alternative uses

9.24. Existing waste management sites are part of the infrastructure for waste development in Northamptonshire. Depending on individual circumstances, such sites may also have the potential to increase their capacity, or be able to diversify to provide additional waste services and facilities.

9.25. Permanent sites and those with a long term temporary planning permission should therefore be safeguarded from development for non-waste management uses.

This application complies with the need for an existing waste management site to provide additional waste services.

NCC Minerals & Waste Development Framework Control & Management of Development

This application complies with and supports the following Policies:

Policy CMD1 – Development Criteria for waste management facilities.

Policy CMD2 – Development criteria for waste disposal.

This application enhances ‘the development of a sustainable waste network and facilitates delivery of Northamptonshire’s waste management capacity requirements’.