CONTENTS

1. ABOUT THE NORTHAMPTONSHIRE MINERALS AND WASTE DEVELOPMENT FRAMEWORK ... 1

2. THE ROLE OF THE CORE STRATEGY .. 4

3. POLICY CONTEXT ... 5
 Waste policy context .. 5
 Minerals policy context ... 7
 The Sustainable Community Strategy and the MWDF 7
 Joint Municipal Waste Management Strategy 8

4. CONTEXT TO MINERALS AND WASTE DEVELOPMENT IN NORTHAMPTONSHIRE ... 9
 Northamptonshire and the growth agenda 10
 Catchment areas for waste management 12
 Locations for mineral extraction in Northamptonshire 12

5. THE MWDF VISION AND OBJECTIVES ... 16
 The vision ... 16
 The objectives .. 16

6. STRATEGY FOR WASTE MANAGEMENT AND DISPOSAL IN NORTHAMPTONSHIRE ... 19
 Capacity to be met ... 19
 The spatial strategy for waste management 24
 The strategy for disposal ... 28

7. STRATEGY FOR MINERALS EXTRACTION .. 31
 Provision to be met ... 31
 The spatial strategy for mineral extraction 32

8. THE KEY DIAGRAM ... 36

9. OTHER CORE DEVELOPMENT PLANNING CONSIDERATIONS ... 37
 Sustainable development ... 37
 Integration of waste management facilities with other development ... 38
 Encouraging sustainable transport movements 38
 Safeguarding resources, sites and facilities 39
 Development in the vicinity of minerals and waste development 41
 Restoration and after-use of minerals and waste sites 42
 Addressing the impact of proposed minerals and waste development ... 43

10. IMPLEMENTATION AND MONITORING OF THE CORE STRATEGY .. 44
 Implementation ... 44
 Monitoring .. 44

APPENDIX 1: REPLACEMENT OF MINERALS AND WASTE LOCAL PLAN POLICIES BY MWDF POLICIES ... 48

APPENDIX 2: GLOSSARY ... 50
POLICY CS1:	NORTHAMPTONSHIRE’S WASTE MANAGEMENT CAPACITY	30
POLICY CS2:	SPATIAL STRATEGY FOR WASTE MANAGEMENT	30
POLICY CS3:	STRATEGY FOR WASTE DISPOSAL	30
POLICY CS4:	SPATIAL STRATEGY FOR MINERAL EXTRACTION	35
POLICY CS5:	PROVIDING FOR AN ADEQUATE SUPPLY OF AGGREGATES	35
POLICY CS6:	BUILDING AND ROOFING STONE	35
POLICY CS7:	SUSTAINABLE DESIGN AND USE OF RESOURCES	39
POLICY CS8:	CO-LOCATION OF WASTE MANAGEMENT FACILITIES WITH NEW DEVELOPMENT	39
POLICY CS9:	ENCOURAGING SUSTAINABLE TRANSPORT MOVEMENTS	39
POLICY CS10:	MINERALS SAFEGUARDING AREAS	41
POLICY CS11:	SAFEGUARDING WASTE MANAGEMENT AND MINERALS RELATED DEVELOPMENT FROM ALTERNATIVE USES	41
POLICY CS12:	DEVELOPMENT IN THE VICINITY OF MINERALS AND WASTE DEVELOPMENT	41
POLICY CS13:	RESTORATION AND AFTER-USE OF MINERALS AND WASTE DEVELOPMENT	42
POLICY CS14:	ADDRESSING THE IMPACT OF PROPOSED MINERALS AND WASTE DEVELOPMENT	43
1. ABOUT THE NORTHAMPTONSHIRE MINERALS AND WASTE DEVELOPMENT FRAMEWORK

1.1. The Northamptonshire Minerals and Waste Development Framework, or MWDF, is the land use planning strategy for minerals and waste related development in the county. It provides the basis for investment in new waste and minerals development in Northamptonshire, and where in the county it should go to.

1.2. The MWDF identifies what minerals and waste related development should go where, why it should go there, and how by doing so, it can make other land use and infrastructure systems function better. It considers the impact and design of new minerals and waste development, but also focuses on how this development can best relate to the surrounding land use and link with the wider community.

1.3. The MWDF is also intended to act as a driver for new investment and identifies how investment in minerals and waste development can be optimised for everyone's benefit. It focuses, and where appropriate, integrates minerals and waste development activity and investment with other development and investment in the county. As such it is referred to as a 'spatial plan'.

1.4. It consists of a portfolio of plans which each cover distinct matters relating to minerals and waste development. A MWDF has to have a Core Strategy, but beyond this it is up to each council what to include in it. The components of Northamptonshire’s MWDF are set out in the Northamptonshire Minerals and Waste Development Scheme (MWDS).

1.5. The approved MWDF will provide the basis for determining planning applications for, or covering, minerals and waste related development in Northamptonshire.

1.6. The Northamptonshire MWDF comprises:
 - The Core Strategy Development Plan Document (DPD), which sets out the broad strategy for minerals and waste in the county and the amount of provision we will need to make for such development.
 - Locations for Waste Development DPD, which identifies specific sites for waste-related development.
 - Locations for Minerals Development DPD, which identifies specific sites for minerals-related development.
 - The Proposals Map, which identifies the sites on a detailed map.
 - Control and Management of Development DPD, which covers aspects of controlling and managing minerals and waste related development, such as traffic, environmental impact, amenity impact and after use following temporary development.
 - The Development and Implementation Principles Supplementary Planning Document (SPD), which provides guidance on waste minimisation and the provision of waste management facilities in new development, as well as the design and restoration of minerals and waste facilities.

1.7. There are also two related documents that, although part of the MWDF, are not local development plans:
 - The Statement of Community Involvement (SCI), which sets out how the County Council will consult and engage with people during the preparation of the MWDF as well as on significant planning applications submitted to the County Council.
 - The Annual Monitoring Report (AMR), which monitors how the County Council is progressing with the MWDF, and particularly how its policies are being implemented. This will be produced every December.

1.8. The DPDs above, along with the East Midlands Regional Plan and all the DPDs prepared by the district planning authorities in Northamptonshire (including the joint planning committees), together form the Development Plan for the area.
1.9. All elements of the MWDF have to be in conformity with the East Midlands Regional Plan unless a clear, robust and evidenced case can be made for why a divergence from policy is necessary for the area.

1.10. The Core Strategy has undergone both a Sustainability Appraisal (SA) and a Habitats Regulations Assessment (HRA). SA is required for each of the individual components of the MWDF.

1.11. When preparing planning documents, such as this Core Strategy, planning authorities must conduct an environmental assessment in accordance with the requirements of European Directive 2001/42/EC. This must include "assessment of the effects of certain plans and programmes on the environment" (the Strategic Environmental Assessment or SEA Directive). SA effectively broadens the concept of SEA to encompass economic and social impacts. The requirement to carry out SA and SEA are distinct. However, it is possible to satisfy both through a single appraisal process. It should be noted that where reference is made to SA it should be taken to include the requirements of the SEA Directive. The integration of sustainability considerations into the preparation and adoption of Plans is the key focus of the SA process.
1.12. HRA is required under the European Directive 92/43/EEC on the conservation of natural habitats and wild fauna and flora for plans that may have an impact on European Sites (Natura 2000). A HRA considers the impacts of a land use plan against the conservation objectives of the site and to ascertain whether it would adversely affect the integrity of the site. Where significant negative effects are identified, alternative options should be examined to avoid any potential damaging effects. As the Upper Nene Valley Gravel Pits Site of Special Scientific Interest (SSSI) is designated a potential European Special Protection Area (pSPA), HRA is therefore required for relevant components of the MWDF.

Box CS1: What development is covered by the Northamptonshire MWDF?

The MWDF only deals with specific types of planning - namely minerals and waste development. Definitions for which are set out below.

Waste

The EC Waste Directive defines waste as “any substance or object which the holder disposes of or is required to dispose of”. Waste is categorised into three main streams: municipal solid, commercial & industrial, and construction & demolition waste.

Municipal solid waste (MSW) is waste that is collected and disposed of by, or on behalf of, a local authority. It will generally consist of household waste and any other wastes collected by a Waste Collection Authority (WCA) or Waste Disposal Authority (WDA) or their agents. It includes waste collected from civic amenity sites, commercial or industrial premises, and waste resulting from the clearance of fly-tipped materials and litter.

Commercial and industrial (C&I) waste is defined as “waste from premises used mainly for trade, business, sport, recreation or entertainment” (Environmental Protection Act 1990 s5.75(7)).

Construction and demolition (C&D) waste is waste arising from any development such as vegetation and soils (both contaminated and uncontaminated) from the clearance of land, remainder material and off-cuts, masonry and rubble wastes arising from the demolition, construction or reconstruction of buildings or other civic engineering structures. Construction and demolition waste may also include hazardous waste materials such as lead, asbestos, liquid paints, oils, etc.

Other types of waste include: agricultural waste, hazardous waste, waste water & sewage, mining & quarry waste, contaminated land waste, as well as waste electrical & electronic equipment.

Minerals

Minerals in this county generally mean ‘aggregate minerals’. Aggregate minerals are the raw materials used by the construction industry and are used in a variety of ways including for concrete, road construction and manufactured building products such as concrete blocks, pipes and kerbs. Aggregates are divided into two sub-categories: primary aggregates and secondary aggregates.

Primary aggregates are comprised of naturally occurring materials such as crushed rock (e.g. limestone) and sand and gravel which are land won (in other words extracted directly from the ground).

Secondary aggregates are waste or by-products from industrial processes, whereas recycled aggregates are reprocessed materials previously used in construction. Both secondary and recycled aggregates are used in the construction industry to replace the use of primary aggregates. Secondary and recycled aggregates are estimated to contribute 10% of the county’s overall aggregate consumption with the two main sources of recycled aggregates being construction and demolition wastes, and re-surfacing of roads.
2. THE ROLE OF THE CORE STRATEGY

2.1. The Core Strategy is the lead element of the Northamptonshire MWDF and all other parts of the MWDF are guided by what it says. It sets out:
- the long-term vision for minerals and waste development in Northamptonshire to 2026,
- the key principles, or objectives, that are required to realise the vision,
- the amount of mineral extraction and waste generated that we need to provide for through sites and facilities,
- the spatial strategy for meeting this provision,
- other key strategic directions and policies for minerals and waste development, and
- the framework for implementing and measuring the success of the Core Strategy.

2.2. The other parts of the MWDF do not introduce new key areas of policy. Sites identified in the ‘locations’ documents must be fully in line with the Core Strategy.

2.3. The plan period of this Core Strategy is from 2006 to 2026 (1 January 2006 to 1 January 2026).

Figure CS2: Relationship between the Core Strategy and the other elements of the MWDF
3. POLICY CONTEXT

3.1. The MWDF has to be prepared in the context of a set of national and regional guidelines and strategies. The strategic context for the Plan is provided by a number of key policy documents including: national planning policy statements and guidance, the East Midlands Regional Plan, and the Sustainable Community Strategy.

3.2. A series of Mineral Planning Statements (MPSs) and Planning Policy Statements (PPSs) provide the Government’s national land use planning policy and guidance. These documents must be taken into account in the preparation of local development documents. These have now mostly replaced the old system of Mineral Planning Guidance Notes (MPGs) and Planning Policy Guidance Notes (PPGs) although some, particularly MPGs, still remain intact.

3.3. The East Midlands Regional Plan (officially known as the “Regional Spatial Strategy” or “RSS8”) provides the long term development strategy for the region over a 15-20 year period. Prepared by the East Midlands Regional Assembly (EMRA) it covers the scale and distribution of new housing, priorities for the environment, transport, infrastructure, economic development, minerals extraction and waste management. The current Regional Plan was issued in March 2009. The Regional Plan also incorporates the Milton Keynes and South Midlands Sub-Regional Strategy (MKSM SRS), which covers the whole of Northamptonshire.

Waste policy context

3.5. The key planning document for waste is PPS10 - Planning for Sustainable Waste Management (and its Companion Guide). This document establishes key principles, of particular significance is the need to drive waste management up the waste hierarchy, addressing waste as a resource, and looking to disposal as the last option but one which must be adequately catered for. PPS10 also includes a number of other key objectives that regional and local planning bodies should address:

- Provide facilities that reflect the need for communities to deal with their own waste wherever possible.
- Help secure the recovery or disposal of waste without endangering human health and without harming the environment.
- Reflect the concerns and interests of communities, the needs of waste collection authorities, waste disposal authorities and businesses.
- Ensure the layout and design of new development supports sustainable waste management.

3.6. The Government’s Waste Strategy 2007 is of particular relevance as it sets the waste management context which planning policy has to have reference to.

3.7. There have been considerable policy changes since the 2000 Waste Strategy. The landfill tax escalator and the introduction of the Landfill Allowance Trading Scheme (LATS) have created sharp incentives to divert waste from landfill. Additional funding for local authorities, including through the private finance initiative (PFI), has led to a major increase in kerbside recycling facilities and new waste treatment facilities. European Directives are targeting specific sectors, including vehicles, electrical and electronic equipment and packaging. However, the aim of moving waste disposal up the waste hierarchy (shown in Figure CS3) remains a key element.
3.8. England’s performance on waste still lags behind other European countries. The new Strategy builds on the aims of the National Waste Strategy 2000 to minimise waste and encourage the recycling, composting and recovery of waste in a number of ways:

- New targets for the recycling and composting of household waste (at least 40% by 2010, 45% by 2015 and 50% by 2020) and the recovery of municipal waste (53% by 2010, 67% by 2015 and 75% by 2020).
- A greater focus on waste prevention, with a new target to reduce the amount of waste not reused, recycled or composted from over 22.2 million tonnes in 2000 by 29% to 15.8 million tonnes in 2010 with an aspiration to reduce it to 12.2 million tonnes in 2020; a reduction of 45%.
- Plans to set new targets to reduce the amount of commercial and industrial and also construction, demolition and excavation waste going to landfill as a result of waste reduction, reuse and recycling.
- Increasing the landfill tax escalator so that the standard rate of tax will increase by £8 per year from 2008 until at least 2010/2011 to give greater financial incentives to businesses to reduce, reuse and recycle waste (to £48 in 2010).

Regional waste policy

3.9. The Regional Plan sets a minimum target for the recycling and composting of municipal solid waste of 30% by 2010 and 50% by 2015.

3.10. The Regional Plan is supported by the Regional Waste Strategy (RWS), which although required to be prepared is not a statutory document. It contains the following principles:

- working towards zero growth in waste by 2016,
- reducing the amount of waste sent to landfill,
- exceeding Government targets for recycling and composting to achieve levels of current best practice, and
- taking a flexible approach to other forms of waste recovery on the basis that technology in this area is developing very quickly.

3.11. The RWS was issued in January 2006 and has been used to inform the approach to the MWDF. It identifies apportionments of the waste management capacity required for the three main waste streams by sub-region for the period until 2020. The total quantities are split into categories of recycling/composting requirement, landfill diversion, re-use and disposal. The RWS anticipates zero growth by 2016 and assume recycling rates for municipal waste in line with the Regional Plan.
Minerals policy context

3.12. The most important national minerals policy document is MPS1 - Planning and Minerals (and its accompanying Practice Guide). Other national policy, such as PPS7 - The Countryside and the Rural Economy, PPS12 - Local Development Frameworks, PPS9 - Biodiversity and Geological Conservation, and PPS25 - Development and Flood Risk are also particularly relevant.

3.13. The National and Regional Guidelines for Aggregates Provision in England also form important policy guidance. The East Midlands Regional Aggregates Working Party (EMRAWP) facilitates sub-regional (i.e. county level) apportionment of the production guidelines identified in MPS1. The Guidelines have been revised to 2020; however sub-regional apportionments have yet to be formally updated and as such are not reflected in the Regional Plan, which sets out the provision to be met based on the Guidelines for 2001 to 2016.

The Sustainable Community Strategy and the MWDF

3.14. The MWDF is part of the development plan system but it has an important inter-relationship with the Sustainable Community Strategy (SCS); a partnership document prepared following consultation with local communities and key local partners through the Local Strategic Partnership (LSP), but led by the local authority. The SCS replaces Community Strategies, and in the case of a two tier local authority area, such as Northamptonshire, the county-wide strategy becomes the overarching strategy with which district level strategies must dovetail.

3.15. The SCS sets out the strategic vision for a place and is linked into overarching regional strategies. It provides the vehicle for considering and deciding how to address difficult cross-cutting issues such as the economic future of an area, social exclusion and climate change. Building these factors into the community’s vision in an integrated way is at the heart of creating sustainable development at the local level.

3.16. The inter-relationship is such that the SCS has to take full account of spatial, economic, social and environmental issues, many of which are set out and articulated in the county’s development frameworks; whilst the key spatial planning objectives for the area as set out in the development framework core strategies are fully aligned with SCS priorities.

3.17. The SCS for Northamptonshire was approved in October 2008. It contains four ambitions for Northamptonshire:

- Ambition 1: To be successful through sustainable growth and regeneration.
- Ambition 2: To develop through having a growing economy and more skilled jobs.
- Ambition 3: To have safe and strong communities.
- Ambition 4: Healthy people who enjoy a good quality of life.

3.18. A number of aspirations are identified under each theme. For the MWDF the first ambition, ‘to be successful through sustainable growth and regeneration’ is the most relevant. This ambition contains three aspirations that link between the MWDF and the Sustainable Community Strategy.

3.19. The manner in which the MWDF will seek to meet these aspirations is set out in Table CS1 below.
Table CS1: How the MWDF supports the ambitions and aspirations of the Northamptonshire Sustainable Community Strategy

<table>
<thead>
<tr>
<th>Ambition 1: To be successful through sustainable growth and regeneration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residents will live in housing that is sustainable, affordable and of good quality</td>
<td></td>
</tr>
<tr>
<td>What the Sustainable Community Strategy says</td>
<td>We will use new materials and technologies if this doesn’t clash with current buildings or countryside and we will make sure that we manage water, waste and energy in a sustainable way. Through Core Strategy Policy CS7 on sustainable design and use of resources.</td>
</tr>
<tr>
<td>How the MWDF will help bring this about</td>
<td></td>
</tr>
<tr>
<td>The physical and social infrastructure will be in place to match expected growth</td>
<td></td>
</tr>
<tr>
<td>What the Sustainable Community Strategy says</td>
<td>We must plan new infrastructure so that it can take the strain of a large increase in population. For waste management infrastructure, through Core Strategy Policy CS8 on the co-location of waste management facilities with new development and the general spatial strategy for waste management in Policy CS2. We also identify the amount of mineral extraction, and where this should broadly come from, to support growth and new infrastructure in Policies CS4 and CS5.</td>
</tr>
<tr>
<td>How the MWDF will help bring this about</td>
<td></td>
</tr>
<tr>
<td>Our buildings and countryside will be improved and protected for future generations</td>
<td></td>
</tr>
<tr>
<td>What the Sustainable Community Strategy says</td>
<td>We will help our residents and businesses to reduce the amount of waste they produce and increase the amount of waste that is recycled, composted and re-used. Through the general policies in the Core Strategy, especially Policies CS1 and CS2.</td>
</tr>
<tr>
<td>How the MWDF will help bring this about</td>
<td></td>
</tr>
</tbody>
</table>

Joint Municipal Waste Management Strategy

3.20. The Joint Municipal Waste Management Strategy for Northamptonshire (JMWMWS), produced by the Northamptonshire Waste Partnership (NWP) comprising the County Council (as Waste Disposal Authority, WDA) and the district and borough councils (as Waste Collection Authorities, WCA), was reviewed and approved in 2008. The JMWMS sets out how the councils in Northamptonshire will manage the collection and treatment of municipal waste for the period 2007 to 2021. It identifies the types of services and technologies needed to reach the partnership’s goals and also includes the county’s response to the Landfill Allowances Trading Scheme.

3.21. The JMWMS sets the following targets for recycling and composting of household waste which exceed national targets: 44% by 2009/10, 48% by 2012/13, 52% by 2015/16, and 56% by 2019/20. The most recent data for 2008/09 suggests that the NWP is well placed to meet the 2009/10 target, with approximately 42% of household waste recycled and / or composted in 2008/09.

Project Reduce

3.22. Northamptonshire County Council has joined forces with Milton Keynes Council, under the banner of ‘Project Reduce’, to establish the long term management of municipal waste for both authorities, delivered through a PFI. A Joint Outline Business Case (OBC) to the Department for Environment, Food and Rural Affairs (DEFRA) was successful, with £138 million being awarded to both councils in November 2008. A two-year procurement process began in April 2009, with ultimately a final preferred bidder being selected and invited to take on a contract for approximately 25 years. The preferred bidder will work in partnership with the two councils to develop new waste facilities which are anticipated to be operational by 2014/15, with the aim being to divert the remaining MSW (following prior-treatment) from landfill to advanced treatment.
4. CONTEXT TO MINERALS AND WASTE DEVELOPMENT IN NORTHAMPTONSHIRE

4.1. Northamptonshire is a county at the heart of England, but has no particular alignment to any region. It is formally part of the East Midlands region, which includes Leicestershire and Nottinghamshire, yet Birmingham in the West Midlands is the nearest major regional city to the county. Northamptonshire is adjacent to the South East region but there is also a strong affinity with the East of England region, not least through the county being within that areas broadcasting region. Although east-west road links are good the key transport communication links, and therefore other links, are with the world city of London. Taken together the closeness of the relationships with the east, south-east and London make Northamptonshire effectively a part of the wider south-east functional area.

Plan CS1: Northamptonshire in its wider regional context
Northamptonshire and the growth agenda

4.2. Planning for minerals and waste related development needs to reflect Northamptonshire’s regional context, but also fundamentally requires to be linked to the wider development picture. This is one that sees Northamptonshire as a key area for growth and development.

4.3. The broad development strategy for Northamptonshire is contained within the Regional Plan. This development strategy takes forward the Government’s Sustainable Communities Plan growth proposals for Northamptonshire within the MKSM growth area. The growth proposals identify a large amount of new housing and job growth within Northamptonshire up to 2021. The intention is that this growth will continue to 2026 and beyond (in fact to at least 2031). The rate of growth in Northamptonshire is forecast to be the highest in England over this period; indeed it will have delivered over 110,000 new homes by 2026. It should also be noted that urban areas adjacent to the county at Milton Keynes and Peterborough are also national growth locations, and will be taking substantial growth, however their proportionate increases are less than that proposed for Northamptonshire.

4.4. Within the County this nationally-derived growth will be concentrated at two main locations: Northampton and Corby / Kettering / Wellingborough, with a secondary focus at Daventry (in other words five of the current six main population centres), but there will also be some growth at Towcester and Rothwell / Desborough. There will be more local growth at the remaining towns including Rushden, and a very small number of other settlements. The exact location of this development and the identification of the other settlements are set out in Joint Core Strategies, produced for the west and the north of the county by the West and North Northamptonshire Joint Planning Units and which cover all development planning matters except for minerals and waste development. This north and west split is also reflected in the structures and processes which have been subsequently set up for delivery of this growth. Despite this, it is recognised that Northamptonshire does not functionally operate as distinct northern and western areas, and that it is important to develop economic and planning proposals that can form a coherent whole, especially for minerals and waste matters.

4.5. The amount and scale of growth will emphasise that the population focus for Northamptonshire will be very much on a Northampton – Wellingborough / Rushden - Kettering - Corby axis. Population and job growth has significant implications for both minerals and waste development. Minerals and waste facilities will be required to support development (through the supply of building materials and handling of waste from construction) and throughout the community’s life (e.g. provision of waste management facilities).

4.6. Planning for minerals and waste should therefore seek to ensure the provision of an adequate and steady supply of minerals and the development of a sustainable waste management network. The approach to mineral extraction and waste management (and where necessary disposal) in this county is guided at a strategic level by the Regional Plan (it should be noted that there is no specific guidance on minerals and waste matters in the MKSM SRS). The MWDF should be in general conformity with the Regional Plan. Much of what the Regional Plan says, particularly on minerals matters but also largely on waste matters, is broadly a repetition of national guidance. However, in relation to minerals it does set out the sub-regional apportionments for aggregates minerals provision as agreed via the Regional Aggregates Working Party, and which predate the adoption of the MKSM SRS. In relation to waste management it gives more specific advice in seeking a centralised pattern of facilities around the main areas of growth in the county and in highlighting the aspiration to work towards zero growth in waste at the regional level by 2016.
4.7. The Core Strategy is able to diverge from Regional Plan policy if a robust case can be made as to why this is necessary for the county. Northamptonshire will be the fastest growing area in the country, but there is no specific minerals and waste coverage in the part of the Regional Plan that sets out the growth agenda, the MKSM SubSRS. Having to plan on the basis of an aggregates apportionment that pre-dates the growth agenda, and an assumption of zero growth in waste at the regional level by 2016 are two instances where a case for a variation from the Regional Plan may be able to be made on the basis of the growth planned for the county.

Economy and jobs

4.8. The Sustainable Communities Plan had as a driver “to accommodate the economic success of London and the wider South East and ensure that the international competitiveness of the region is sustained, for the benefit of the region and the whole country”. The MKSM SRS earmarks Northamptonshire for over 80,000 net additional jobs by 2021.

4.9. Whilst Northamptonshire is relatively self-contained in employment terms, its labour markets are linked to those of surrounding areas and its businesses function within national and international supply chains. However there are growing flows of people to destinations elsewhere in the MKSM sub-region and also in the London – Stansted – Cambridge - Peterborough corridor. Given the scale of housing growth intended for Northamptonshire, there needs to be commensurate economic development, otherwise people will increasingly live in Northamptonshire and work elsewhere. Already the labour market pull of the larger towns in Northamptonshire, and particularly Northampton itself, is not as strong as could be expected.

4.10. Northamptonshire is already a strong and prosperous economy. In terms of Gross Value Added (GVA) per head, the county performs above both East Midlands and England averages. It should also be borne in mind that GVA is highest in urban authorities compared to rural ones; Northamptonshire under this measure is a rural authority area. Its high GVA is therefore a good performance. The high GVA per head performance derives from the high levels of employment; Northamptonshire has economic activity rates approaching 84% and an employment rate of 80%.

4.11. However, on average those that are working in the county are in relatively low value jobs. Although qualification levels in the county are better than the regional average, the East Midlands is not a good benchmark as it generally underperforms on this measure. In comparison with outer south-east competitors such as Milton Keynes and Cambridgeshire, Northamptonshire does less well.

4.12. The concentration of businesses and levels of entrepreneurship per capita is generally higher in the rural areas of South Northamptonshire, Daventry and East Northamptonshire, with lower concentrations in Corby and Northampton.

4.13. Although classed as being economic development, minerals and waste related development has a very limited role to play in addressing the structural issues highlighted above compared to other elements of planning and development. Waste development has the greater role of the two, particularly as new technologies for waste management come forward and the industry moves from being a predominantly low value, low skilled sector into a more balanced one. Waste management is a key part of the Environmental Technologies job sector, along with renewable energy, and this job sector is one that Northamptonshire’s economic agencies consider should be supported to grow in the county, particularly in North Northamptonshire.

4.14. Historically there has been a tendency to dispose of waste (with the emphasis very much on disposal rather than treatment) in former mineral workings. As most of these workings were located in rural areas the majority of waste was not disposed of, let alone treated, close to where it was generated. The strong move away from waste disposal to treatment, coupled with advancements in waste technologies and design, has resulted in waste management facilities being able to be co-located with other forms of development (i.e. no longer rural-centred). They can therefore be better linked to where waste is actually generated.
Catchment areas for waste management

4.15. Being within the East Midlands region rather than the East or South-East regions, there is no requirement for Northamptonshire to take a proportion of London’s waste, as counties in those regions are required to do. This is because London is seen to have considerable difficulties in being self-sufficient in its ability to deal with the waste it generates.

4.16. As a consequence, Northamptonshire should be able to better plan for sustainable waste management and disposal in the county as it does not need to specifically provide for another area’s waste generation. For reasons of sustainability, the movement of waste within the county and across its borders should ideally be kept to a minimum. But inevitably there will be some cross-border flows for reasons of geographical convenience, which may be broadly balanced, or because some waste management facilities can have a highly specialised role that means they have larger catchment areas. The Core Strategy recognises that waste management is becoming more specialised and is also a higher value industry than previously. It is not appropriate to oppose facilities serving wider catchments when other industries and commercial enterprises are not so constrained. However, in the wider interests of sustainability, it is not envisaged that Northamptonshire should take on a role as a key sub-national location for waste management facilities.

Locations for mineral extraction in Northamptonshire

4.17. Mineral deposits suitable for use as aggregates are not evenly distributed and as such there are often imbalances between where the demand for aggregates arises and the location of the resources which can meet those demands. This is acknowledged in national and regional guidance and apportionments of minerals which recognises that some sub-regions will have to supply other sub-regions. This is particularly relevant to Northamptonshire as the annual county apportionment we are meant to meet, as set out in, but not driven by, the Regional Plan, was halved in the late 1990’s in recognition of reduced production in the county. However, this has not been readjusted to reflect our changed growth role.

4.18. The main resources present in Northamptonshire are sand and gravel, limestone, and ironstone. Economically sand and gravel is by far the most important mineral resource that is found in the county. Within the county there are three main types of sand and gravel deposits: glacial and pre-glacial which are found in the north-west and south-central parts of the county, and post-glacial which are present in river valleys across Northamptonshire. Limestone (crushed rock) is primarily found in the north and north-east of the county. Ironstone deposits are also found in large parts of central and east Northamptonshire but have minimal economic importance and are no longer extracted.

4.19. In the fifteen years prior to 2006 sand and gravel extraction in Northamptonshire has been focused in the Nene Valley between Northampton and Stanwick, with extraction from a number of small sites elsewhere in the county including the Milton Sands area to the south-east and south-west of Northampton, and at one site in the Great Ouse Valley. Crushed rock extraction has been focused to the north and north-west of Northampton and at one site in the north-east of the county.

4.20. Soft sand production in the recent years up to the beginning of the MWDF period has been concentrated at a site to the south-west of Northampton in the Milton Sands belt, where working has now ceased. It is becoming increasingly difficult to identify new sites for soft sand extraction in the county. As there is no specific requirement to have a specific soft sand apportionment, it is considered to be appropriate in the Northamptonshire context to have a general sand and gravel apportionment which does not separate out a soft sand provision figure.

4.21. Whether extraction should be from the river valley or glacial areas has been a key issue in respect of mineral extraction in the county in the recent past and had led to a policy stance, set out in the Minerals Local Plan 1997 and its 2006 review, to move away from river valley extraction to more upland (glacial) areas of Northamptonshire.
4.22. This stance was largely driven by landscape and restoration issues. The concerns were that past extraction from the Nene Valley and its restoration to lakes had adversely altered the landscape character, and that further extraction in river valleys would continue to do so. It was considered that there would not be the same impact on overall landscape character if extraction took place in the glacial areas.

Plan CS2: Geological map of the chief mineral resources of Northamptonshire
4.23. However, the view that the impact of extraction and restoration in glacial areas would not be as marked as in the river valleys, is complicated by the fact that landscape and other impacts in the pre-glacial, and in particular the glacial areas, can be as significant in their own way in landscape terms (if not landscape character terms). As such there would need to be either restoration to agriculture through bringing in replacement fill or alternatively for the land to be re-shaped following extraction.

4.24. Furthermore restoration of extracted sites in river valleys to lakes would now no longer be pursued even if extraction was permitted, and restoration to a mix of agriculture and water meadows would instead occur. This would involve bringing in replacement fill as would be the case for the glacial sites. It should also be noted that river valley restoration is seen to be more conducive to increasing biodiversity.

4.25. When the move away from river valleys was first set out in policy in the mid 1990s, the view was that the glacial areas, when added to supplies from the pre-glacial areas, would provide a reasonable alternative supply of minerals to the river valleys. However, glacial deposits for potential extraction have not been put forward by the minerals industry, let alone worked, because the quality of resources is variable therefore reducing the economic viability of extraction. It is also now acknowledged by geologists that the resources in the glacial areas are far more limited in extent than originally envisaged.
4.26. This has therefore moved the agenda from being simply a landscape issue, to also one of needing to ensure the supply of quality sand and gravel in a fast growing county. Where extraction is currently taking place such as the central Nene Valley or the Great Ouse, rather than valleys such as the Ise where there is no history of extraction, then extraction would be focused in these locations together with extraction from glacial and pre-glacial areas.
5. **THE MWDF VISION AND OBJECTIVES**

5.1. The MWDF has to be underpinned by a ‘vision’ and objectives to realise the vision. Policies and proposals should reflect the vision and objectives. The vision and objectives in this Core Strategy apply to all other components of the MWDF, including the Locations for Minerals and Waste Development DPDs.

The vision

5.2. The vision is about stating the desired outcome for the future, and therefore is the cornerstone for the MWDF. The vision for the Northamptonshire MWDF is strongly based around how minerals and waste development will contribute to the management of the significant growth that is taking place in the county.

The MWDF vision

The Northamptonshire of 2026 will have seen sustained growth and development. A network of well designed urban-focused waste management facilities, and sensitively worked and restored mineral extraction sites from the glacial and pre-glacial areas in the western half of the county and certain of its river valleys, will have helped to have brought about the implementation and management of this growth.

Through growth and development, the creation of sustainable communities across Northamptonshire will have also been underpinned by optimising the efficient use of mineral and waste resources, including communities taking more responsibility for the waste they generate.

The objectives

5.3. The objectives should be derived from, and support, the vision and be clearly defined and measurable. They should also seek to build upon national and regional planning policy, but provide a Northamptonshire perspective.

Objective 1: Developing sustainable communities

Support the development of sustainable communities in the key national growth area of Northamptonshire by facilitating the provision of infrastructure, facilities and services through ensuring:

- a supply of minerals to the construction industry in line with national and regional guidance, and
- development of a modern network of sustainable waste management facilities which contributes towards achieving regional self-sufficiency and meets community, business and industry needs.

5.4. This is about ensuring the growth agenda in Northamptonshire, and particularly how the homes and jobs that will be needed to forge sustainable new communities and reshape existing communities in a more sustainable way, are not hindered by (a) an inadequate supply of minerals to build or reshape the county's communities, or (b) having waste management facilities that are badly sited and therefore not integrated or linked with the communities that generate the waste.

Objective 2: Sustainable minerals and waste development in Northamptonshire

Promote a step change in high quality design-led sustainable development by maximising materials resource efficiency, minimising waste, optimising the use of existing infrastructure & highway networks and previously developed land, and promoting the sustainable transport of materials.

5.5. This is about optimising the use of resources by making sure that only those that are really needed are used and that sustainable alternatives are used instead. Resources in this context also include man-made resources.
5.6. This acknowledges that minerals and waste related development is predominantly private sector led; except for that related to municipal waste, but which itself is increasingly being procured through PFIs. It is about the MWDF needing to give clear signposting to the industry and to investors in the industry over where they should invest and how by doing so, it can be related to the other growth area investment that is coming into Northamptonshire.

5.7. This is about ensuring that the spatial strategy that is chosen for extraction is one that results in the delivery of the minerals required to meet the required apportionments; sand and gravel extraction is highlighted because of the history of the low landbank for this resource in the county.

5.8. This is about ensuring that the spatial strategy chosen for locating waste management facilities is one that meets the national and regional requirements of being both urban-focused and near to where the waste has to travel from, and preferably integrating rather than separating out facilities where this is appropriate.

5.9. This objective is about ensuring that in a county where much new development is planned, those aggregates that are produced are not used where lesser quality previously used or non-mineral materials could be used instead.

5.10. This is about ensuring that, in a county where there are not ample supplies of resources of economic importance that are readily extractable, those resources that are present are not unnecessarily sterilised by other development. This is particularly important in a county where growth will lead to a significant amount of greenfield development compared to other areas of the country.
5.11. This is about ensuring that the waste management (and disposal) facilities in the county are not compromised by new non-waste development in their vicinity. Notably where existing facilities at the edge of, or near to, urban areas are finding that the county’s growth is resulting in new urban extensions and other development being planned around them.

5.12. This objective is about encouraging the use of local building materials where these can be used to retain local identity of the Northamptonshire townscape, streetscape and landscape, or to encourage it where this identity is not as strong as it could be. At the same time these building materials should be used for this specific purpose of promoting identity rather than simply being used as general aggregates.

5.13. This is about ensuring new or extended minerals and waste related uses not only do not damage or destroy the county’s existing environmental and natural assets, but that opportunities are taken (including via restoration) to enhance existing and planned green infrastructure networks and to support the identified landscape character areas of the county.

5.14. This is about not simply promoting restoration to the previous use when temporary minerals and waste uses cease, but to use such restoration to increase biodiversity or other natural assets (for example), and that the results of the restoration are subsequently properly managed and maintained.

5.15. This objective is about ensuring that minerals and waste development on its own or cumulatively does not damage existing or planned amenity, or cause health and safety difficulties; furthermore that opportunities are taken to link such development with recreational uses where this is practicable.
6. STRATEGY FOR WASTE MANAGEMENT AND DISPOSAL IN NORTHAMPTONSHIRE

Capacity to be met

6.1. In order to determine the quantity and type of facilities needed to manage waste and develop a sustainable waste management network to 2026 and beyond, forecasts of how much waste is likely to be generated within Northamptonshire for both management and disposal were developed.

6.2. Government guidance recommends the development of a gradually declining medium growth profile which incorporates waste management targets. The future growth of waste arisings in Northamptonshire has therefore been identified through the application of such a profile. Municipal waste forecasts are in line with those in the Northamptonshire Joint Municipal Waste Management Strategy. The Regional Plan sets out priorities for waste management, including an aspiration to work towards zero growth in waste at the regional level by 2016. In the particular circumstances of Northamptonshire, which will be the fastest growing county in terms of population growth to 2026, this is not considered to be a realistic assumption. The declining growth profile used for the Core Strategy (Tables CS2(a-e)) more closely reflects local circumstances (compared with the Regional Plan forecasting which applies zero growth by 2016). This will nevertheless still lead to a reduction in the growth of waste arisings to an appropriate level for the county and drive behavioural change.

6.3. Waste forecasts were used to determine the gap between current and future waste arisings, and subsequently the required additional waste management capacity. The ‘capacity gap’, simply put, is the difference between the current operational waste management capacity and the management capacity required at the end of the plan period. This capacity gap also needs to identify the different types of waste and management methods. Facilities in the county have traditionally been landfill. In comparing the estimated capacity shortfalls by waste planning authority area identified in the Regional Plan it should be noted that there is a small differential in the early years, and in latter years provision in the Core Strategy exceeds the figures in the Regional Plan. The figures in Tables CS2(a-e) have inbuilt flexibility to accommodate growth. Capacity will only be taken up if it is required; this presents a more realistic future scenario given the demands placed on the Regional Plan’s Southern Sub-Area (i.e. Northamptonshire) to absorb extensive development.

6.4. Due to increasing restrictions on disposal to landfill, all waste will require treatment prior to disposal (and this treatment can involve a number of waste management methods, including sorting). The waste management capacity has been identified by management method, including recycling, biological processing, treatment and disposal. It is assumed that re-use and recycling rates will not decrease. In line with PPS10 provision of waste management capacity equivalent to at least ten years of the annual rates set out in the Regional Plan has been demonstrated in Tables CS2(a-e). In order to facilitate improved monitoring of waste arisings and uptake of waste management capacity throughout the plan period, indicative waste management capacity has been provided at five year intervals (starting at 2005/06).

6.5. The indicative future capacity requirements to achieve waste management targets are summarised below in Tables CS2(a-e).
Table CS2(a): Summary of municipal solid waste (MSW) arisings

<table>
<thead>
<tr>
<th>Year</th>
<th>Total MSW arisings</th>
<th>Recycling</th>
<th>Biological processing</th>
<th>Advanced treatment</th>
<th>Disposal to landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Disposal post preliminary treatment (no advanced treatment)</td>
</tr>
<tr>
<td>Baseline year 2005/06</td>
<td>369,000</td>
<td>67,000</td>
<td>58,000</td>
<td>0</td>
<td>244,000</td>
</tr>
<tr>
<td>2010/11</td>
<td>383,000</td>
<td>97,000</td>
<td>84,000</td>
<td>10,000</td>
<td>191,000</td>
</tr>
<tr>
<td>2015/16</td>
<td>414,000</td>
<td>111,000</td>
<td>96,000</td>
<td>207,000</td>
<td>0</td>
</tr>
<tr>
<td>2020/21</td>
<td>443,000</td>
<td>119,000</td>
<td>102,000</td>
<td>221,000</td>
<td>0</td>
</tr>
<tr>
<td>2025/26</td>
<td>472,000</td>
<td>127,000</td>
<td>109,000</td>
<td>236,000</td>
<td>0</td>
</tr>
</tbody>
</table>

Indicative capacity requirement 2015/16 (tonnes)

<table>
<thead>
<tr>
<th>Total C&I arisings</th>
<th>Recycling</th>
<th>Biological processing</th>
<th>Advanced treatment</th>
<th>Disposal to landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td>44,000</td>
<td>38,000</td>
<td>207,000</td>
<td>49,000</td>
<td></td>
</tr>
</tbody>
</table>

Indicative capacity requirement 2025/26 (tonnes)

<table>
<thead>
<tr>
<th>Total C&I arisings</th>
<th>Recycling</th>
<th>Biological processing</th>
<th>Advanced treatment</th>
<th>Disposal to landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td>59,000</td>
<td>51,000</td>
<td>236,000</td>
<td>56,000</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Residual arisings for 2005/06 and 2010/11 in Table CS2(a) reflect current levels of recycling and composting activities as these methods also produce small amounts of residual waste that should not be discounted, however may be suitable for further advanced treatment prior to disposal to landfill.
- Forecasts for MSW arisings post 2014/15 include additional advanced treatment capacity resulting from the implementation of the municipal waste PFI (Northamptonshire County Council and Milton Keynes Council) which is anticipated to be operational by 2014/15.

Table CS2(b): Summary of commercial and industrial (C&I) waste arisings

<table>
<thead>
<tr>
<th>Year</th>
<th>Total C&I arisings</th>
<th>Recycling</th>
<th>Biological processing</th>
<th>Advanced treatment</th>
<th>Disposal to landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Disposal post preliminary treatment (no advanced treatment)</td>
</tr>
<tr>
<td>Baseline year 2005/06</td>
<td>1,016,000</td>
<td>219,000</td>
<td>219,000</td>
<td>122,000</td>
<td>455,000</td>
</tr>
<tr>
<td>2010/11</td>
<td>1,113,000</td>
<td>295,000</td>
<td>295,000</td>
<td>166,000</td>
<td>357,000</td>
</tr>
<tr>
<td>2015/16</td>
<td>1,196,000</td>
<td>327,000</td>
<td>327,000</td>
<td>185,000</td>
<td>357,000</td>
</tr>
<tr>
<td>2020/21</td>
<td>1,277,000</td>
<td>359,000</td>
<td>359,000</td>
<td>203,000</td>
<td>357,000</td>
</tr>
<tr>
<td>2025/26</td>
<td>1,356,000</td>
<td>389,000</td>
<td>389,000</td>
<td>220,000</td>
<td>357,000</td>
</tr>
</tbody>
</table>

Indicative capacity requirement 2015/16 (tonnes)

<table>
<thead>
<tr>
<th>Total C&I arisings</th>
<th>Recycling</th>
<th>Biological processing</th>
<th>Advanced treatment</th>
<th>Disposal to landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td>108,000</td>
<td>108,000</td>
<td>63,000</td>
<td>420,000</td>
<td></td>
</tr>
</tbody>
</table>

Indicative capacity requirement 2025/26 (tonnes)

<table>
<thead>
<tr>
<th>Total C&I arisings</th>
<th>Recycling</th>
<th>Biological processing</th>
<th>Advanced treatment</th>
<th>Disposal to landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td>170,000</td>
<td>170,000</td>
<td>98,000</td>
<td>432,000</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Residual arisings for 2005/06 and 2010/11 in Table CS2(b) reflect current levels of recycling, biological processing and advanced treatment activities as these methods also produce small amounts of residual waste that should not be discounted, however may be suitable for further advanced treatment prior to disposal to landfill.
Table CS2(c): Summary of construction and demolition (C&D) waste arisings

<table>
<thead>
<tr>
<th>Year</th>
<th>Total (tonnes per annum)</th>
<th>Inert recycling</th>
<th>Inert fill</th>
<th>Disposal to landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline year 2003/04</td>
<td>1,482,000</td>
<td>732,000</td>
<td>568,000</td>
<td>182,000</td>
</tr>
<tr>
<td>2010/11</td>
<td>1,653,000</td>
<td>848,000</td>
<td>633,000</td>
<td>172,000</td>
</tr>
<tr>
<td>2015/16</td>
<td>1,809,000</td>
<td>928,000</td>
<td>693,000</td>
<td>188,000</td>
</tr>
<tr>
<td>2020/21</td>
<td>1,969,000</td>
<td>1,010,000</td>
<td>754,000</td>
<td>205,000</td>
</tr>
<tr>
<td>2025/26</td>
<td>2,123,000</td>
<td>1,089,000</td>
<td>813,000</td>
<td>221,000</td>
</tr>
</tbody>
</table>

Indicative capacity requirement
- 2015/16: 196,000 tonnes
- 2025/26: 357,000 tonnes

Note:
- 'Inert fill' includes inert waste material that when buried will have no adverse effect on people or the environment and does not contain contaminants (e.g. such as combustible, putrescible, degradable, leachable, hazardous, or liquid wastes, etc).
- The baseline year figure is that for 2003/04 as per the Office of the Deputy Prime Minister (ODPM) 2005 Survey of Arisings and Use of Construction, Demolition & Excavation Waste as Aggregate in England in 2003. This is due to significant inconsistencies in surveyed arisings between 2003 and 2005.

Table CS2(d): Summary of waste arisings requiring treatment

<table>
<thead>
<tr>
<th>Year</th>
<th>Total arisings (MSW, C&I, C&D) (tonnes)</th>
<th>Management method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Recycling (MSW, C&I)</td>
</tr>
<tr>
<td>Baseline year 2005/06</td>
<td>2,867,000</td>
<td>287,000</td>
</tr>
<tr>
<td>2010/11</td>
<td>3,149,000</td>
<td>392,000</td>
</tr>
<tr>
<td>2015/16</td>
<td>3,418,000</td>
<td>439,000</td>
</tr>
<tr>
<td>2020/21</td>
<td>3,689,000</td>
<td>478,000</td>
</tr>
<tr>
<td>2025/26</td>
<td>3,951,000</td>
<td>516,000</td>
</tr>
</tbody>
</table>

Indicative capacity requirements
- 2015/16: 152,000 tonnes
- 2025/26: 270,000 tonnes

Note:
- 'Total arisings' represents all waste arising from MSW, C&I and C&D waste streams and is broken down to show waste arisings requiring treatment; hence C&D inert fill and mixed disposal to landfill are not shown in the 'management methods' column but are included in the 'total arisings' (i.e. for years listed the following disposal amounts are not accounted for under 'management methods' - 2005/06: 1.448Mt, 2010/11: 1.353Mt, 2015/16: 1.237Mt, 2020/21: 1.316Mt, and 2025/26: 1.390Mt).
- Excludes residual waste arisings and hazardous waste arisings.
- Baseline year for inert recycling is 2003/04 as per the ODPM 2005 Survey of Arisings and Use of Construction, Demolition & Excavation Waste as Aggregate in England in 2003. This is due to significant inconsistencies in surveyed arisings between 2003 and 2005.
Table CS2(e): Summary of landfill capacity requirements

<table>
<thead>
<tr>
<th>Year</th>
<th>Disposal to landfill</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSW</td>
<td>C&I</td>
<td>C&D</td>
<td>Total</td>
</tr>
<tr>
<td>Baseline year 2005/06</td>
<td>249,000</td>
<td>497,000</td>
<td>182,000</td>
<td>927,000</td>
</tr>
<tr>
<td>2010/11</td>
<td>201,000</td>
<td>413,000</td>
<td>172,000</td>
<td>786,000</td>
</tr>
<tr>
<td>2015/16</td>
<td>49,000</td>
<td>420,000</td>
<td>188,000</td>
<td>657,000</td>
</tr>
<tr>
<td>2020/21</td>
<td>53,000</td>
<td>426,000</td>
<td>205,000</td>
<td>684,000</td>
</tr>
<tr>
<td>2025/26</td>
<td>56,000</td>
<td>432,000</td>
<td>221,000</td>
<td>709,000</td>
</tr>
</tbody>
</table>

Estimated residual disposal capacity 2015/16 (tonnes):
- 49,000
- 420,000
- 188,000
- 657,000

Estimated residual disposal capacity 2025/26 (tonnes):
- 56,000
- 432,000
- 221,000
- 709,000

Note:
- MSW and C&I disposal includes residual waste arisings as stated in Tables CS2(a-c). Excludes hazardous waste arisings.
- Baseline year figure for C&D is 2003/04 as per the ODPM 2005 Survey of Arisings and Use of Construction, Demolition & Excavation Waste as Aggregate in England in 2003. This is due to significant inconsistencies in surveyed arisings between 2003 and 2005.
- Total disposal to landfill excludes inert fill.
- Estimated residual disposal capacity assumes disposal of residual waste arisings.

6.6. On the basis of the above tables, provision needs to be made for waste management facilities to meet the following indicative capacity gaps that will arise by 2026:
- Recycling capacity for municipal and commercial & industrial waste will need to increase by 229,000 tonnes,
- Biological processing capacity for municipal and commercial & industrial waste will need to increase by 221,000 tonnes,
- Waste management or advanced treatment capacity required to deal with the remaining waste (currently disposed of to landfill) will need to increase by 334,000 tonnes, and
- Inert recycling capacity for construction and demolition waste will need to increase by 357,000 tonnes.

It is important to note that there will still be a requirement for disposal to landfill. The total estimated disposal capacity requirement for 2026 is 709,000 tonnes.

6.7. Residual waste arisings (post advanced treatment) have been determined by applying the minimum residual output rates per tonne of waste input for: processing of recyclables (3%), composting (5%) and advanced treatment (20%)\(^1\). Outputs vary widely and are dependant on the technology employed, scale of facility and quality of waste input (i.e. waste stream or mix, contaminant level, and calorific value). Not all of this material needs be disposed of to landfill; it can be re-used within the operational cycle, further processed using other technologies, used in construction or recycled. Potential residual waste arisings are derived from a limited range of technologies which may not reflect the final technologies which come on stream during the plan period. This is due to the dynamic nature of the waste management industry and emerging technologies. Hence it is recognised that, although it is necessary to acknowledge the potential future capacity requirements for disposal, forecasts for residual arisings requiring disposal to landfill cannot be determined with any level of certainty.

\(^1\) Residual arisings rates are derived from: ODPM 2004 Planning for Waste Management Facilities; and Scottish Environmental Protection Agency (SEPA) 2006 Residual Waste Treatment Technologies Information Sheets.
6.8. A variety of different types and sized facilities distributed throughout the county will be required to deal appropriately with the different types of waste produced and establish a sustainable waste management network. Given the types of waste produced within Northamptonshire the following types of facilities could be used in combination to support the development of a sustainable waste management network and provide the required capacity:

- Recovery and recycling facilities (including both material recycling facilities and secondary & recycled aggregate facilities for C&D waste),
- Biological processing (including composting and anaerobic digestion),
- Transfer stations (where required to support other facilities),
- Waste to energy physio-chemical (such as thermal (e.g. incineration, gasification, or pyrolysis), fuel substitutes, plasma arc, and feedstock recycling / substitutes),
- Bio-chemical waste treatment, and
- Other waste to energy facilities and emerging technologies.

6.9. Given the dynamic environment that the waste management industry currently operates within it is considered unwise to take a prescriptive approach in setting out the specific number, type and scale of facilities required throughout the plan period as this may prove to stifle innovation and uptake of emerging technologies. However, it is useful to identify potential combinations of different types and scales of waste management facilities in order to demonstrate the range of facilities that may be required to meet waste management targets. Decisions for the provision of future waste facilities will be taken in light of prevailing circumstances and the policies of the MWDF.

6.10. Potential combinations of waste management facilities needed to address capacity requirements and meet waste management targets (2026) based on indicative facility capacities (average throughput) are outlined in Table CS3 below.

Table CS3: Example of the potential combinations of waste management facilities needed to address capacity requirements

<table>
<thead>
<tr>
<th>Capacity gap and management method (2025/26)</th>
<th>Facility type and average throughput</th>
<th>Estimated facility requirements (2025/26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recycling (MSW, C&I)</td>
<td>Materials recycling facility (MRF): 50,000 tonnes per annum (tpa)</td>
<td>3-5 medium or 2-3 large scale</td>
</tr>
<tr>
<td>229,000 tonnes</td>
<td>Biological processing: 25,000 tpa</td>
<td>7-9 medium or 4-6 large scale</td>
</tr>
<tr>
<td>Biological processing (MSW, C&I)</td>
<td>Biological processing (MSW, C&I)</td>
<td>Mechanical biological treatment (MBT): 120,000 tpa</td>
</tr>
<tr>
<td>334,000 tonnes</td>
<td>Waste to energy (WtE): 70,000 tpa (small scale) or 300,000 tpa (sub-regional scale)</td>
<td>MBT: 3-4 medium or 2-3 large scale</td>
</tr>
<tr>
<td>Inert recycling</td>
<td>Inert waste processing / recycling: 100,000 tpa</td>
<td>3-4 medium or 2 large scale</td>
</tr>
<tr>
<td>357,000 tonnes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Estimated facility requirements - additional facilities or extension of equivalent capacity to existing facilities.
- MBT processes accepting 'black bag' waste (with recyclables removed through kerbside collection systems and household waste recycling centres (HWRCs)) producing refuse derived fuel to undergo waste to energy physio-chemical treatment.
The spatial strategy for waste management

6.11. A sustainable waste management network requires both primary and advanced waste management facilities. This in turn should reflect both the catchment area and functional role. These should also go to locations where investment can be optimised and sustainable development can occur. More significant facilities for waste management should also seek to create higher value waste-management related jobs at the respective facility. The key driver for the location of these facilities will be their relationship to what this MWDF defines as Northamptonshire’s central spine.

6.12. Northamptonshire’s waste management network will be developed to incorporate a centralised distribution of advanced treatment facilities supported by a network of local and neighbourhood preliminary treatment facilities. These facilities should be co-located together and with other forms of complementary development where appropriate, for example commercial and industrial, or residential development. In interpreting the spatial strategy for waste management reference should be made to Box CS3 which sets out the locational hierarchy, catchment areas and functional role in relation to facilities.

The central spine and sub-regional centre

6.13. The main urban areas of the county extend from Northampton in the west to Corby in the north-east, and encompass Wellingborough, Rushden / Higham Ferrers and Kettering and also the smaller towns of Irthlingborough, Burton Latimer, Rothwell and Desborough. Although these urban areas vary in both size and role, together they comprise a central spine of urban locations within which the majority of facilities should be sited.

6.14. Significant integrated facilities and the majority of advanced treatment facilities should be located within the central spine. Preliminary facilities that serve the central spine and its hinterlands, and which are compatible with or complementary to urban development, should also be provided within these areas. As an emerging sub-regional centre, and a secondary focus for growth in the county, Daventry should also be a focus for advanced and preliminary treatment facilities.

6.15. Within the central spine and the sub-regional centre of Daventry, both areas of general industrial use and areas of significant new residential and commercial development would be the favoured locations for such development. Indeed the co-location of advanced and preliminary waste management facilities with complimentary activities within major areas of new development, such as urban extensions, would also not only be encouraged, but in most cases expected.

Beyond the central spine and sub-regional centre

6.16. Preliminary facilities that would feed into the advanced treatment facilities in the central spine will be encouraged in the rural service centres of Brackley, Oundle, Raunds, Thrapston and Towcester. Locations such as general industrial areas and any new development areas would be the preferable locations within these rural service centres.

6.17. Facilities provided for within the rural hinterlands should have a local or neighbourhood catchment and should mainly be for preliminary treatment. Facilities located within the rural hinterlands may also include those whose siting is incompatible with, or not complementary to, urban development; for example due to facility operational requirements (such as in the case of anaerobic digestion). In such circumstance, the facility should deal with waste generated from identified urban centres and be appropriately located to serve those centres.

6.18. Facilities within urban areas should generally be located within industrial areas or co-located with new residential and commercial development. Facilities in rural areas should where possible be linked to existing employment uses.
6.19. Waste generated in the rural hinterlands will normally be expected to go to the most appropriate facilities within the respective catchment for the waste for treatment. Depending on where this is generated this will either be provided in the urban areas of the central spine, the sub-regional centre of Daventry or the rural service centres. However for rural areas on the fringes of the county could be served by their functional equivalents in neighbouring areas outside the county: Milton Keynes, Banbury, Rugby, Market Harborough and Stamford.

Facilities with a national or regional catchment

6.20. The development in Northamptonshire of facilities with a national or regional catchment area are only considered appropriate where these would be of a specialised nature, with a genuine specialist catchment area for the waste to be managed.

Neighbourhood facilities

6.21. Neighbourhood waste management facilities associated with new development will be expected to be provided within urban extensions in the central spine and Daventry, and areas of new development at the rural service centres such as Towcester.

Sewage and waste water treatment

6.22. If there is a need for an increase in sewage and waste water treatment capacity during the plan period that cannot be accommodated within the curtilages of existing facilities, then proposals should have regard to the spatial strategy for waste management and the relevant policies of the Control and Management of Development DPD. There may be some potential for sewage treatment sites to accommodate other waste management facilities or joint arrangements such as co-composting or anaerobic digestion which utilise household waste and sewage sludge.

6.23. In order to provide greater context to the spatial strategy for waste management and disposal within the county, information relating to the locational hierarchy, catchment areas and functional role are outlined in Box CS3 below.
Box CS3: Waste management and disposal in Northamptonshire

Locational hierarchy

The hierarchy of areas for locating waste management facilities are defined as:

- **Central spine** – in or related to the principal urban area of Northampton; in or related to the urban areas of Corby, Kettering, Wellingborough and Rushden / Higham Ferrers; in or related to the central spine service centres of Burton Latimer, Irthlingborough, Rothwell and Desborough; in or related to other built up local service centres within the central spine between Northampton and Corby.
- **Sub-regional centre** – in or related to Daventry.
- **Rural service centres** – in or related to Brackley, Oundle, Raunds, Thrapston and Towcester.
- **Rural hinterlands** – the rest of Northamptonshire.

Catchment areas

Waste management facilities in Northamptonshire will be designated as having one or more of the following catchments within which waste can be sourced:

- **National**.
- **Regional**.
- **Sub-regional**.
- **Local**.
- **Neighbourhood**.

The definitions of these catchments will be contained in the Control and Management of Development DPD.

Functional role

The functional role of waste management facilities are defined as:

- **Advanced treatment** – thermal, pyrolysis, gasification, plasma arc and other waste to energy processes and other emerging advanced technologies.
- **Preliminary treatment** – household waste recycling centres, materials recycling facilities, composting (open windrow and in-vessel), anaerobic digestion, mechanical biological / heat treatment, inert processing, other recycling facilities and waste transfer stations.
- **Disposal** – non-inert landfill / landraise and inert landfill / landraise.
- **Sewage and waste water treatment** – sewage and waste water treatment plants.
Plan CS3: The spatial strategy for waste management
The strategy for disposal

6.24. Disposal is the least preferred option, but one that must be adequately catered for, in order to manage wastes prior to the provision of new advanced treatment facilities and to cater for residual wastes for which there is no alternative management method available. Moves towards alternative waste management methods will significantly reduce the quantity of waste requiring disposal to landfill but a requirement will remain. There is uncertainty regarding: the impact of legislative and financial instruments (particularly relating to commercial and industrial and inert wastes); the unknown nature of cross-boundary and sub-regional waste movements; difficulty in determining exact recovery rates; and the volume of residual waste requiring disposal. It is therefore difficult to ascertain the space required for future landfill with any precision. Nonetheless, estimated residual waste arisings have been calculated for the plan period (refer Table CS2e.) Currently available space is sufficient until around 2016, but after that time it is likely that additional space will be required. Disposal facilities have not been specifically identified through the spatial strategy for waste management. However, in view of the degree of uncertainty and the limited existing void availability, careful monitoring will be required, and suitable sites allocated to enable provision to be made at the right time. Proposals for additional capacity will be required to robustly justify need and ensure that only residual waste is disposed of. Where it can be clearly demonstrated that additional landfill capacity for residual wastes should be provided, preference would be for an extension to an existing site.

6.25. Landfill sites that are outside of urban areas (or future boundaries of urban areas) should be restored to a non-waste management use once they have completed their landfill role. However, in certain circumstances a specific case for their continuance in some other waste management role could be considered on the basis of the spatial strategy for waste management and other policies in the MWDF.

Disposal of inert wastes

6.26. The expectation is that disposal of inert fill will normally be at currently worked mineral extraction sites, where the material can be used as much needed restoration material. As at 1 January 2009 there was broadly 3.53 million tonnes of material required to restore sites currently worked or with a planning permission (granted or agreed), and therefore it is important that alternative proposals for the disposal of inert fill that would prejudice such restoration are not permitted. Alternative beneficial uses for the disposal of inert waste, for example land reclamation, may be acceptable if it can be clearly demonstrated that these would not prejudice the restoration of mineral sites.

Hazardous waste management and disposal

6.27. Within Northamptonshire 62,700 tonnes of hazardous waste was generated in 2007; a marked increase from previous years’ figures, but as a consequence of national changes in how such waste data is captured. Forecasts indicate that, by 2026, production within the county could increase by around 20,000 tonnes per annum, to a total of 82,000 tonnes. Of which 32,000 tonnes will require disposal to hazardous waste landfill, together with hazardous residual waste of an additional 15,000 - 44,000 tonnes produced as a result of advanced treatment processes (depending on treatment type). A proportion of Northamptonshire’s hazardous waste is managed in the county but, at present, most is exported. This may continue during the plan period for certain types of waste. At the same time, most hazardous waste managed in the county is imported, reflecting the specialist nature of facilities.
Table CS4: Summary of hazardous waste arisings

<table>
<thead>
<tr>
<th>Year</th>
<th>Total arisings (tonnes)</th>
<th>Recycled / re-used (tonnes)</th>
<th>Treatment / transfer (tonnes)</th>
<th>Disposal to landfill (tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline year 2006/07</td>
<td>62,700</td>
<td>6,100</td>
<td>31,900</td>
<td>24,700</td>
</tr>
<tr>
<td>2010/11</td>
<td>67,200</td>
<td>6,600</td>
<td>34,100</td>
<td>26,500</td>
</tr>
<tr>
<td>2015/16</td>
<td>72,400</td>
<td>7,100</td>
<td>36,800</td>
<td>28,500</td>
</tr>
<tr>
<td>2020/21</td>
<td>77,000</td>
<td>7,500</td>
<td>39,100</td>
<td>30,400</td>
</tr>
<tr>
<td>2025/26</td>
<td>81,800</td>
<td>8,000</td>
<td>41,500</td>
<td>32,200</td>
</tr>
<tr>
<td>Indicative capacity requirements 2015/16 (tonnes)</td>
<td>1,000</td>
<td>4,900</td>
<td>3,800</td>
<td></td>
</tr>
<tr>
<td>Indicative capacity requirements 2025/26 (tonnes)</td>
<td>1,900</td>
<td>9,700</td>
<td>7,500</td>
<td></td>
</tr>
</tbody>
</table>

6.28. Northamptonshire has one specialist hazardous waste facility, largely disposal, of national significance (Kings Cliffe). It is one of the few such facilities in the country (and the only one in the East Midlands, East of England, South East and London regions). It specialises in particular aspects of hazardous waste disposal and management which means that it has a national catchment. Whilst it is accepted that the specialised nature of the industry and market economics will not lead to a number of such sites in every region, there is a concern that the current disposition of facilities is leading to an undersupply of facilities in the wider London and south east regions. On this basis the focus of the role of the Northamptonshire facility should be one where (a) its current particular national specialisms in hazardous waste are maintained, and (b) it continues to have a regional role by supporting the management of hazardous waste in the region.

6.29. It is proposed to include a policy in the Control and Management of Development DPD on hazardous waste that would seek to cover these complexities. This policy would tie back to the Core Strategy policies on waste management and disposal. In the short term, pending the publication of a National Policy Statement on the subject, the Core Strategy makes indicative capacity provision for the quantity of waste produced in the county. The level of future provision in the Plan will be reviewed in the light of emerging national and regional policy and the technologies chosen for the new advanced treatment processes. At the same time, and in the same context, the issue of the management of radioactive wastes will be addressed.
Policy CS1: Northamptonshire's waste management capacity

The development of a sustainable waste management network to support growth within Northamptonshire will involve the provision of facilities to meet the following indicative waste management capacities during the plan period:

- Recycling (MSW and C&I) capacity of 439,000 and 516,000 tonnes per annum for 2016 and 2026 respectively,
- Biological processing (MSW and C&I) capacity of 423,000 and 498,000 tonnes per annum for 2016 and 2026 respectively,
- Waste management or advanced treatment (MSW and C&I) capacity of 392,000 and 456,000 tonnes per annum for 2016 and 2026 respectively,
- Inert recycling (C&D) capacity of 928,000 and 1,089,000 tonnes per annum for 2016 and 2026 respectively, and
- Hazardous waste management of 72,000 and 82,000 tonnes per annum for 2016 and 2026 respectively.

This provision will come from a mix of extensions to existing sites, intensification or re-development of existing sites and new sites, providing they all meet the spatial strategy for waste management and are assessed as meeting environmental, amenity and other requirements. Allocations that will contribute to meeting provision will be identified in the Locations for Waste Development DPD.

Policy CS2: Spatial strategy for waste management

Northamptonshire’s waste management network, particularly advanced treatment facilities with a sub-regional or wider catchment, will be focused within the central spine, and the sub-regional centre of Daventry. Development should be concentrated in Northampton, Wellingborough, Kettering, Corby and Daventry. Development in the smaller towns should be consistent with their local service role.

Facilities in urban areas should be co-located together and with complementary activities.

At the rural service centres, facilities with a local or neighbourhood catchment will provide for preliminary treatment in order to deal with waste generated from these areas.

In the rural hinterlands only facilities with a local or neighbourhood catchment providing for preliminary treatment, or that are incompatible with urban development, should be provided. Where it is the latter they should deal with waste generated from identified urban areas and be appropriately located to serve those areas.

Facilities in rural areas should, where possible, be associated with existing rural employment uses.

Policy CS3: Strategy for waste disposal

Provision should be made to meet the following indicative waste disposal capacities during the plan period:

- Non-inert disposal (MSW, C&I and C&D) capacity of 657,000 and 709,000 tonnes per annum for 2016 and 2026 respectively, and
- Inert fill disposal capacity of 693,000 and 813,000 tonnes per annum for 2016 and 2026 respectively.

Provision of capacity for general non-inert waste disposal should only be made if the need for this can be justified and it is only for residual wastes. Where it can be clearly demonstrated that additional landfill capacity for residual wastes should be provided, preference would be for an extension to an existing site, unless it can be shown that a standalone site would be more sustainable and better located to support the management of waste close to its source.

Provision for inert waste disposal should be made at mineral extraction sites requiring restoration, unless it can be clearly demonstrated that an alternative location would not prejudice the restoration of these sites.
7. STRATEGY FOR MINERALS EXTRACTION

Provision to be met

7.1. The Government’s national guidance for aggregates provision (MPS1) sets out regional apportionments in order to ensure an adequate and steady supply of aggregates is maintained to meet anticipated needs of the construction industry and reflect housing provision and growth. These have then been further refined to sub-regional level and incorporated into the Regional Plan.

7.2. Northamptonshire’s annual apportionment is for an average annual figure of 1.36 million tonnes of aggregates to be provided consisting of 0.97 million tonnes of sand and gravel per annum and 0.39 million tonnes of crushed rock (limestone) per annum.

7.3. It should be noted that this is for the period 2001 to 2016, whereas the plan period of the MWDF Core Strategy is to 2026. Government guidance recommends that in the absence of revised sub-regional figures, apportionment should be rolled forward on the basis of annual averages; this is therefore the approach taken in the MWDF.

7.4. The National and Regional Guidelines for Aggregates Provision in England have been revised to 2020; however sub-regional apportionments (i.e. county level) have yet to be formally updated. If as a consequence of the sub-regional revision, Northamptonshire’s apportionment figures are significantly amended the Core Strategy will be reviewed accordingly, with any proposed change to the annual provision figures thoroughly tested through this process. Northamptonshire is identified as a key growth area, and although it is widely recognised that increased growth will require an increase in resource consumption, with the largest growth in the country to 2026, Northamptonshire cannot be expected to provide the resources for growth solely from within the county. If there is a continuing mis-match between the apportionment and demand to meet the growth agenda, then any shortfall would continue to be met by imports.

7.5. A specific provision figure for building and roofing stone is not identified in the Core Strategy, but the promotion of building and roofing stone extraction is contained in a specific policy identifying the criteria against which proposals would be judged. In addition specific sites for building or roofing stone extraction are also included in the Locations for Minerals Development DPD.

7.6. There will not be provision made for the extraction of refractory minerals, this will be met through incidental working of other sites for extraction. Working of limestone for agricultural purposes other than that permitted under the provisions of the Town and Country Planning General Permitted Development Order 1995 will not be provided for.

7.7. To meet the provision for sand and gravel of 19.36 million tonnes to 2026, 16.49 million tonnes of sand and gravel provision for the remaining 17 years of the plan period (as at 1 January 2009) needs to be identified, minus the current estimated committed reserves of 6.64 million tonnes. The Locations for Minerals Development DPD therefore must allocate sufficient sites to provide the remaining 9.85 million tonnes of sand and gravel. Substantial permitted reserves of crushed rock exist, in excess of the requirement of 7.9 million tonnes for the Plan period, but most is within a single site (Wakerley) the yield from which it is not at present possible to estimate. Overall, 6.63 million tonnes of crushed rock provision needs to be identified in the Locations for Minerals Development DPD.
Landbanks

7.8. A landbank is a stock of planning permissions for the winning and working of minerals over a specified time period. Government guidance requires landbanks to be maintained for all aggregate minerals, with the recommended landbank period for sand and gravel being at least seven years. A longer time period (e.g. ten years) may be appropriate for crushed rock. However, landbanks can only be maintained in practice if the minerals industry comes forward with planning applications in the right place at the right time. In Northamptonshire there has been a long period where the landbank for sand and gravel has been below these figures, but where this has not impacted on the annual provision being delivered. Nevertheless, and subject to any review of national or regional guidance, the aim will be to maintain and at the end of the plan period, have a landbank of at least seven years for sand and gravel and at least ten years for crushed rock based on the annual average apportionment.

Old minerals permissions for crushed rock (limestone) extraction

7.9. The supply of crushed rock as aggregate in Northamptonshire has traditionally been met through a combination of old minerals permissions and permissions granted specifically for limestone. However, sites with old permissions are effectively dormant and do not give a true reflection of what the approved supply, and therefore the landbank, is in reality. Unless identified as an allocated site in the Locations for Minerals Development DPD, old minerals planning permissions (including those with modern planning conditions) will not be taken to contribute towards the provision of aggregates and the maintenance of a landbank. It is not expected that sites with old permissions that are not identified in the Locations for Minerals Development DPD will come forward, but if they do such permissions will be treated as a windfall increase to Northamptonshire’s aggregate apportionment.

The spatial strategy for mineral extraction

7.10. Although minerals can only be extracted where they are found, the mineral resources within Northamptonshire are significant and it is appropriate in the context of long term minerals planning to establish a clear spatial strategy for their extraction.

7.11. The spatial development strategy for mineral extraction in the county is to focus extraction in glacial and pre-glacial areas, and selected river valleys where there is currently or has been mineral extraction. River valley provision will therefore come from the Nene Valley west of Wellingborough and the Great Ouse Valley. This strategy acknowledges that supply and quality issues are the key to delivering aggregates for growth. In river valleys, restoration should not be to lakes or large areas of open water.

7.12. Inclusion of parts of the Nene and Great Ouse Valleys supports the strategic approach of having locations for minerals and waste development that are closely related to existing and proposed development; with the Nene locations directly supporting growth at Northampton and Wellingborough, and Great Ouse locations linking to Towcester.

7.13. In identifying sand and gravel sites for allocation in the Locations for Minerals Development DPD, provision will be able to come from both extensions to existing sites and from new sites as long as it complies with the spatial strategy. There will be no requirement to identify sites for soft sand provision, to meet a notional apportionment of soft sand from within the wider sand and gravel apportionment, due to this not being a national or regional requirement. However soft sand sites can be identified in the Locations for Minerals Development DPD if assessments through this process identify such sites as appropriate for allocation.

7.14. The spatial strategy focuses on sand and gravel extraction as this is where a clear spatial approach to identifying provision is required. For crushed rock, site allocations in the Locations for Minerals Development DPD and decisions on proposals will be made having regard to the “factors to be addressed in site selection” set out below. Should proposals come forward for working old mineral permissions, a reduction in the impact of sites and, where appropriate, of their size will be sought through the process of negotiating modern conditions.
Plan CS4: The spatial strategy for mineral extraction

Note: The spatial strategy for mineral extraction is illustrated in Plan CS4. It is important to note that Plan CS4 is a diagrammatic representation only and should not be used to identify specific sites. Where more accurate detail is required regarding actual delineation (i.e. ground-truthing) reference should be made to the British Geological Survey (BGS) Digital Geological Map of Great Britain and Ordnance Survey MasterMap. However it is widely recognised that the BGS mapping is not comprehensive and as such in areas included within the spatial strategy that are not identified on BGS mapping site specific evidence may be required to demonstrate a proven resource.
Factors to be addressed in site selection

7.15. In identifying sites for inclusion in the site-specific Locations for Minerals Development DPD, the following factors must be addressed:

- Impacts of mineral working such as visual intrusion, dewatering, water pollution, noise, dust and fine particles, blasting, transport, and access,
- Impact on landscape, agricultural land, soil resources, water resources (ground and surface), land instability, ecology and wildlife, including severance of landscape and habitat loss, and impacts on sites of geological and nature conservation, archaeological and cultural heritage value,
- Benefits such as providing an adequate supply of minerals to the economy and hence for society (including construction materials needed for the development of national infrastructure and the creation of sustainable communities), creating job opportunities, and the scope for landscape, biodiversity and amenity improvements through mineral working and subsequent restoration,
- Methods of control through planning conditions or agreements to ensure that impacts are kept to an acceptable minimum,
- Level of existing activity and impacts, the duration and nature of proposals for new or further working, and the extent of impacts which a particular site, locality, community, environment or wider area of mineral working can reasonably be expected to tolerate over a particular or proposed period. With respect to an individual site, the effect of all relevant impacts (i.e. of noise, dust, traffic, on landscape, etc.) should be considered objectively, and
- Cumulative impacts of simultaneous and/or successive working of a number of sites in a wider area of commercially-viable deposits.

7.16. The identification of sites should also be consistent with the MWDF policy framework.

7.17. In exceptional circumstances it may be necessary to source sand and gravel provision from outside of the glacial and pre-glacial areas and river valleys identified as strategic areas of focus on Plan CS4. Where this is demonstrated to be justified to meet the required provision for sand and gravel the identification of sites must also address the above factors. The Control and Management of Development DPD identifies the detailed criteria against which proposals will be judged.

Building and roofing stone

7.18. Building stone produced in Northamptonshire includes ironstone, sandstone and limestone which range in colour and texture. Collyweston stone slate is used locally for roofing. These traditional materials play an important role in the restoration of historic buildings and are also used in new buildings, extensions and walling in order to preserve and enhance local distinctiveness and local building character.

7.19. The use of locally sourced building and roofing stone has become a significant factor in the promotion of local identity and in creating a sense of place, and as such the demand for traditional building materials has increased. This is particularly relevant where a match to existing stone and roofs is specified for new development (for example, through the use of design codes).

7.20. In order for a source of building or roofing stone to be commercially workable a number of physical characteristics or parameters have to be satisfied including colour, texture, hardness, and homogeneity. It is important to recognise that building and roofing stone are quarried from geological formations which may be very restricted in occurrence. In addition, sudden changes in the variability of the deposit can make many areas unsuitable. The working and processing of building and roofing stone generally involves smaller areas and lower production rates than other mineral operations. However, working may continue for very long periods due to the intermittent nature of works.
7.21. There is often a large proportion of wastage (overburden) in producing building stone which may be utilised as a construction aggregate. In general, operators receive a higher financial return on building and roofing stone products compared with the aggregate by-product. Due to the variable nature of the deposits, the proportion of aggregate by-product is significantly higher than that of the building and roofing stone won from extraction. Hence the sale of aggregate by-products resulting from the extraction of building and roofing stone assists in off-setting economic costs of extraction. However, Northamptonshire limestone is also not as highly valued as stone sourced from neighbouring counties (in terms of saleable price and demand). Supply of building and roofing stone in the county is therefore limited and in recent years only two sites have consistently worked building stone.

7.22. Unlike for sand and gravel and crushed rock, a specific provision figure for building and roofing stone is not identified at the regional level and thus not cascaded down into the Core Strategy. However, small scale building and roofing stone extraction is promoted in both rural areas and in appropriate settlements, subject to this addressing conservation needs associated with maintaining local distinctiveness in new development, and for the restoration of buildings and structures.

7.23. It is important that building and roofing stone quarries are operated for the principal purpose of extracting traditional building materials and not just for aggregates under the guise of extraction of stone. However, although the principal purpose of extraction will be for stone, the sale of aggregate by-products may be required to ensure economic viability and efficient use of resources.

7.24. The Control and Management of Development DPD identifies the detailed criteria against which proposals will be judged. In addition specific sites for building or roofing stone extraction are also included in the Locations for Minerals Development DPD.

Policy CS4: Spatial strategy for mineral extraction

The spatial strategy for minerals extraction within Northamptonshire is to focus extraction on the county’s pre-glacial and glacial deposits together with the reserves from the river valleys of the Nene (west of Wellingborough) and the Great Ouse.

Policy CS5: Providing for an adequate supply of aggregates

Provision will be made over the plan period 2006 to 2026 for the extraction of:

- 19.36 million tonnes of sand and gravel (equivalent to an annual average of 0.97 million tonnes) provided from glacial and pre-glacial deposits, and the river valleys of the Nene (west of Wellingborough) and the Great Ouse.
- 7.9 million tonnes of crushed rock (limestone) (equivalent to an annual average of 0.39 million tonnes) provided from deposits outside unworked river valleys or from sites with old permissions upgraded to modern conditions.

The maintenance of a landbank of at least seven years for sand & gravel, and at least ten years for crushed rock will be sought.

This provision will come from both extensions to existing sites and new sites if they meet the spatial strategy for mineral extraction and are assessed as meeting environmental, amenity and other requirements of the MWDF. Allocations to meet the required provision will be identified in the Locations for Minerals Development DPD.

Policy CS6: Building and roofing stone

Provision of building and roofing stone should be made for its use in:

- the restoration and renewal of existing historic buildings and structures, or
- new buildings in conservation areas, or
- the enhancement of local character and distinctiveness in other sensitive locations.

This provision will come from both extensions to existing sites and new sites subject to being assessed as meeting environmental, amenity and other requirements of the MWDF. Allocations that will contribute to meeting provision will be identified in the Locations for Minerals Development DPD.
8. THE KEY DIAGRAM

8.1. The Key Diagram below illustrates how the spatial strategy for minerals and waste will relate to the county at 2026.

Plan CS5: Core Strategy Key Diagram
9. OTHER CORE DEVELOPMENT PLANNING CONSIDERATIONS

9.1. This section of the Core Strategy concentrates on those strategic matters relating to minerals and waste development that are not concerned with provision and spatial strategy matters or with development criteria for particular types of minerals and waste development.

Sustainable development

9.2. The promotion of sustainable development is a fundamental priority of spatial planning. For the purposes of Northamptonshire’s Core Strategy for minerals and waste planning there are three areas where there is to be a particular focus: (a) promoting sustainable design and the use of resources, to include waste minimisation in the construction and operation of new development; (b) promoting the co-location of waste management facilities in areas of new development; and (c) encouraging sustainable transport movements associated with minerals and waste related development.

Sustainable design and use of resources

9.3. Given the increasing emphasis on sustainable development, one of the principal objectives of the minerals planning system is to minimise the production of waste and encourage efficient use of materials.

9.4. Planning and the building control regimes along with the construction industry have a major role to play in ensuring that sustainable design, construction and demolition principles are applied to all built development. The emphasis should be on maximising the reuse of materials, preferably on-site as this reduces the need for transport, and failing that, the wastes arising from construction should be managed using more sustainable methods. Additional requirements relating to energy and water efficiency should also apply to new minerals and waste development.

Secondary and recycled aggregates

9.5. Secondary and recycled aggregates represent a potential major source of materials for construction, helping to conserve primary materials and reducing the waste produced. Secondary and recycled aggregates are estimated to contribute 10% of the county’s overall aggregate consumption. They make up a comparatively small contribution to meeting the need for higher quality aggregates as the majority are used for lower quality end uses. Nevertheless the substitution of secondary and recycled materials for primary aggregates has clear environmental advantages, although the processing of recycled or secondary materials can be similar to the processing of primary aggregates and therefore have environmental and amenity impacts.

9.6. Demand and production of secondary and recycled aggregates is increasing. It is estimated that it is possible for up to 25% of total aggregate production and consumption to be comprised of secondary and recycled aggregates in the future. Past government research indicated that of the construction and demolition waste sent to landfill, 40% is of a composition that would be appropriate for recycling. Hence there are still greater opportunities to increase recycling rates; this is supported by the identification of targets for recycled aggregates in government guidance (MPS1).

9.7. However, it should be noted that the regional requirement for mineral extraction in Northamptonshire already assumes a contribution from secondary and recycled materials. Therefore, merely increasing the number of such facilities in Northamptonshire would not lead to a reduction in the amount of extracted provision that is needed to be met.

9.8. Secondary and recycled materials should be used in new development, with the use of higher value materials where secondary and recycled materials will suffice actively discouraged. The use of non-mineral construction materials should be encouraged except where considerations of conserving the existing character of an area would apply.
Waste minimisation in new development

9.9. The waste implications, both in waste generation and in what it means in respect of the facilities for its treatment and disposal, for all development should be considered at the earliest possible stage and given the necessary priority. New development, whether it is housing, commercial or other development, should contribute to the minimisation of waste. Because of the increase in the availability of kerbside schemes for the separation and collection of waste materials, it will be important to ensure that there is adequate space and facilities for the separation, storage and collection of waste within individual buildings in new developments.

9.10. For residential and commercial development, Supplementary Planning Documents (SPDs) for local areas and Development Briefs for individual sites should reflect these principles. For individual development proposals the volumes and types of waste to be generated by the proposed development and the measures to deal with their minimisation and management will be expected to accompany planning applications.

9.11. Detailed Northamptonshire-specific criteria, based on the principles set out in Policy CS7 below, are covered in the MWDF through the Development and Implementation Principles SPD.

Co-location of waste management facilities with other development

9.12. To create a more holistic and integrated approach to waste management within neighbourhoods and communities, there should be an increase in communities, particularly those comprising significant new development, having neighbourhood waste management facilities within them.

9.13. The provision of neighbourhood facilities within, or related to, new development should therefore be facilitated, and the waste planning authority will expect all proposals for significant residential and commercial development within the county to identify how this will be achieved. This will apply in relation to:
 - the provision of 100 or more dwelling houses,
 - retail, leisure, recreation, tourist, community, commercial or industrial uses/facilities with floor space of more than 500 square metres or that will attract a significant number of people / users, or
 - occupation that is likely to generate significant quantities of waste, particularly special waste.

9.14. Such facilities should be appropriate for their location and will need to complement any kerbside system in operation. All facilities will also need to be well designed and properly maintained and operated, with their management and funding planned and agreed beforehand.

9.15. Detailed Northamptonshire-specific criteria based on the principles set out below are covered in the MWDF through the Development and Implementation Principles SPD.

Encouraging sustainable transport movements

9.16. The impact on the local environment and amenity from traffic associated with minerals and waste development is a key matter for consideration in the planning process. Transport impact can be reduced through routing agreements to control traffic movements and/or encourage uptake of alternative transport methods such as rail or water. Use of these more sustainable transport methods is encouraged.

9.17. However it is usually the case that sites are not necessarily in the right place to take advantage of alternative methods of transport, being away from navigable waterways or the rail network. Furthermore where there is an alternative mode potentially available, the use of such alternative transport methods may not be economically viable unless applied to large amount of materials or to long distances transported to or from their source. Consequently the primary transport method used within both the minerals and waste industry is therefore road based transport; the majority of quarry products (80%) are used within 30 miles from source.
Policy CS7: Sustainable design and use of resources
New built development should seek to utilise the efficient use of resources in both its construction and its operation through:

- Design principles and construction methods that minimise the use of primary aggregates and encourage the use of building materials made from secondary and recycled sources,
- Construction and demolition methods that minimise waste production and re-use and recycle materials (as far as practicable) on-site,
- The use of non-primary mineral construction materials, except where there is a need to protect and conserve the existing character of the area, which require traditional building materials,
- Design and layout that allows the sorting, recycling, biological processing and storage of waste, and
- The promotion of energy and water efficiency.

Policy CS8: Co-location of waste management facilities with new development
Related to areas of significant new development there should be a neighbourhood scale waste management facility that either forms part of, or serves this new development. Neighbourhood waste management facilities that would serve existing development will also be encouraged.

Policy CS9: Encouraging sustainable transport movements
Minerals and waste related development should seek to minimise transport movements and maximise the use of sustainable or alternative transport modes.

Safeguarding resources, sites and facilities

Safeguarding mineral resources

9.18. In a county where minerals resources permitted for extraction are not in ample supply (as evidenced by the low landbank of permissions for sand and gravel extraction), the issue of safeguarding known minerals resources from other development that could sterilise its eventual extraction becomes a more important issue, especially as Northamptonshire is a key national growth area. It is a Government requirement that ‘proven resources’ should not be needlessly sterilised by non-mineral development, and that there should be prior extraction of the mineral if it is necessary for such development to take place.

9.19. The key resource in Northamptonshire is sand and gravel; therefore any such sand and gravel resource that can effectively be extracted economically should be safeguarded. As limestone also plays an important role in providing aggregate resources in the county, key resources of this should also be safeguarded as these have an economic importance. On the other hand, ironstone and clay are not in demand in Northamptonshire, and it is unlikely that this situation will change in the long term. These resources are not therefore considered to be of economic importance.

9.20. The resources of economic importance identified for long-term safeguarding have been designated as Minerals Safeguarding Areas, or MSAs, and are shown on the MWDF Proposals Map. This is based on mineral resources identified on British Geological Survey mapping, but has been refined to exclude areas of small resources or those generally within urban areas.

9.21. To ensure these mineral resources of economic importance are safeguarded Minerals Consultation Areas (MCAs) are also designated. Within the MCAs district councils should consult the County Council, as the minerals planning authority, over any proposals for significant development that could lead to sterilisation of mineral resources. The County Council will object to proposals that are considered to sterilise resources of economic importance. Details of the procedure for consultation and the types of development to be consulted upon will be set out in the Control and Management of Development DPD.
9.22. However, even within the MSAs / MCAs, safeguarding should be limited to development where significant sterilisation may potentially occur, and thus where the prior extraction of minerals is likely to be viable (as small developments are unlikely to present viable opportunities for prior extraction). However a number of urban extensions and other areas of new development will be developed in the county up to and beyond 2026. Where such development encroaches into MSAs / MCAs, the prior extraction of minerals will always be sought where this is appropriate.

9.23. Plan CS6 shows the combined MSAs / MCAs. The MWDF only has a remit within Northamptonshire and so these can only be shown on the MWDF Proposals Map within the county. However, because proposals just over the county boundary may have the potential to impact on Northamptonshire, the County Council as the minerals planning authority, will seek to put in place procedural arrangements with neighbouring authorities to facilitate cross-border cohesiveness of the safeguarding policies.

Plan CS6: Northamptonshire’s Minerals Safeguarding Areas
Safeguarding waste management and minerals related development from alternative uses

9.24. Existing waste management sites are part of the infrastructure for waste development in Northamptonshire. Depending on individual circumstances, such sites may also have the potential to increase their capacity, or be able to diversify to provide additional waste services and facilities. As some waste management facilities can be of a relatively low value land use, some of these sites could be vulnerable to redevelopment for other uses.

9.25. Permanent sites and those with a long term temporary planning permission should therefore be safeguarded from development for non-waste management uses. This general principle will also apply to minerals-related uses such as processing sites, railhead facilities, and sewage treatment works. However, the opportunity to set aside the safeguarding requirement is acknowledged where: (a) an alternative site in the same catchment area was to be provided, which was at least as appropriate for the use as the safeguarded location (and there is no break in operations), or (b) it can be clearly proven that there is no longer a need for a facility of this nature in either the vicinity or, in certain circumstances, the wider catchment area.

Development in the vicinity of minerals and waste development

9.26. There should be a sufficient distance between minerals and waste development and other forms of development or sensitive land uses (for example, housing, nature conservation sites, or sites of historic importance). This is not simply about safeguarding the non mineral and waste use, but also about ensuring that any new development does not prevent or prejudice the working of the minerals or waste use that is in close proximity to it.

9.27. There should be no development within the vicinity of an existing, approved (through the grant of planning permission) or allocated location for minerals and waste development if this would either prevent or prejudice the use of that location for these purposes. Separation areas are identified in the Control and Management of Development DPD to prevent the encroachment of sensitive or otherwise incompatible development which would give rise to future amenity issues and impose additional constraints on the operation of such sites.

Policy CS10: Minerals Safeguarding Areas

Mineral resources of economic importance will be safeguarded from sterilisation by incompatible non-mineral development through the designation of Minerals Safeguarding Areas.

Development of a significant nature within Minerals Safeguarding Areas will have to demonstrate that the sterilisation of proven mineral resources of economic importance will not occur as a result of the development, and that the development would not pose a serious hindrance to future extraction in the vicinity. If this cannot be demonstrated, prior extraction will be sought where practicable.

Policy CS11: Safeguarding waste management and minerals related development from alternative uses

Existing sites and sites with either permission for or allocated for waste-related development or minerals processing use should be safeguarded from non-waste and non-minerals related development use unless alternative provision in the vicinity can be made, or if it can be clearly demonstrated that there is no longer a need for a waste management, or minerals processing facility, at that location.

Policy CS12: Development in the vicinity of minerals and waste development

New development adjacent to, or in close proximity to, the following should only be permitted where it can be demonstrated that it would not prevent or prejudice the use of the facility:
- planned and operational mineral extraction or processing facilities,
- planned and operational waste management facilities (including sewage treatment works), or
- minerals and waste related railhead or wharf facilities.
Restoration and after-use of minerals and waste sites

9.28. Most mineral development is of a temporary nature, as is some waste development, notably that related to landfill. Development that is temporary in nature should always have an approved scheme for restoration and an end date by which this will have been implemented. It should be noted that the restoration of minerals and waste sites will have to be done progressively, with small sections of the site worked and then restored and so on.

9.29. Restoration should maximise public and environmental benefit, but its after-use should be determined in relation to its land use context and surrounding environmental character. Public benefit could include uses that benefit the local community, whilst environmental benefit could include habitat creation that meets Northamptonshire Biodiversity Action Plan priorities. A wider scope of restoration, rather than a simple re-instatement to the previous use, allows for consideration of both local circumstance and broader linkages and can support the integration of investment priorities in line with spatial planning principles.

9.30. In river valleys restoration of extracted sites to lakes or large areas of open water would not be appropriate, due to the landscape change it would bring about, but wetland biodiversity restoration would be encouraged. For certain mineral extraction, particularly in the more upland areas of the county (in effect the glacial deposits), in order to minimise transport of fill back to extracted sites for restoration works, restoration of land to a lower level than previously (particularly if the site is on a slope) may be appropriate where it would have no significant adverse impact on the landscape character of the vicinity. Such restoration should still seek to provide related benefits such as increasing nature conservation.

9.31. Detailed Northamptonshire-specific criteria based on the principles set out below are covered in the MWDF through the Control and Management of Development DPD, with further guidance given where appropriate in the Development and Implementation Principles SPD.

Policy CS13: Restoration and after-use of minerals and waste development

All minerals and waste related development of a temporary nature must ensure that the site is progressively restored to an acceptable condition and stable landform.

The after-use of a site will be determined in relation to its land use context, the surrounding environmental character and any specific local requirements, but on the basis that it:
- enhances biodiversity and the local environment and amenity, and
- benefits the local community and/or the local economy.

Sites for mineral extraction in river valleys should not be restored to a predominantly water-based form. Restoration of mineral sites elsewhere in the county to a lower level form will be acceptable if it is able to retain the integrity of the local landscape character and minimises overall traffic movements associated with extraction and restoration of the site.
Addressing the impact of proposed minerals and waste development

9.32. All development wherever it is sited, and whether it is specifically allocated in the MWDF or comes forward through the development control process through the submission of a planning application, has some form of local impact. This has to be addressed before any development can be allowed to proceed. This will also apply to its operation.

9.33. Detailed Northamptonshire-specific criteria based on the principles set out below are covered by the MWDF through the Control and Management of Development DPD, with further guidance given where appropriate in the Development and Implementation Principles SPD.

Policy CS14: Addressing the impact of proposed minerals and waste development

Proposals for minerals and waste development must demonstrate that the following matters have been addressed:

- minimising environmental impact and protecting Northamptonshire’s key environmental designations,
- protecting natural resources or ensuring that any unavoidable loss or reduction is mitigated,
- ensuring built development is of a design and layout that has regard to its visual appearance in the context of the defining characteristics of the local area,
- ensuring access is sustainable, safe and environmentally acceptable, and
- ensuring that local amenity is protected.
10. IMPLEMENTATION AND MONITORING OF THE CORE STRATEGY

Implementation

10.1. The MWDF will ultimately be implemented through the grant of planning permission for individual proposals that are then realised on the ground. Planning permission will be forthcoming in accordance with the Government’s national PPSs, MPSs, the Regional Plan, the policies of the MWDF, and any relevant policies in Local Development Frameworks.

10.2. However activities that can affect the delivery of the MWDF may rely on the operation of other policies, work of other agencies, behaviour of the general public, and actions of industry. Such projects, place making activities, investment decisions and behaviour include the:

- Sustainable Community Strategy for Northamptonshire (and the district ones that flow from it),
- JMWMs for Northamptonshire,
- programmes and projects of the statutory agencies,
- procurement decisions of companies and organisations (including the County Council and its partners in relation to waste management procurement),
- actions and decisions of infrastructure providers, and
- actions of the general public.

10.3. Production and implementation of these strategies, and the actions of these bodies or individuals, may impact upon planning for waste management within the plan area. The County Council will take them into account as necessary, including through the process of monitoring and review.

10.4. It is not only through preparation of policies within the MWDF that the County Council will implement it, although this is expected to remain the key mechanism. As a major landowner, developer and body responsible for the management of municipal waste in Northamptonshire, various arms of the County Council have an especially important role to play in the implementation of the MWDF.

10.5. The County Council will therefore seek to meet the MWDF objectives through its own actions such as:

- Waste management activities - for example, encouraging behavioural change, through the preparation of the JMWMs and procurement of new waste management facilities.
- Corporate behaviour - for example, through the procurement of materials and goods which in their production have sought to minimise waste, made efficient use of materials that are used, encouraged the use of recycled materials and used local materials.
- Its development and construction activities - for example, in the construction and operation of County Council owned new schools and community facilities.
- Implementation of other plans and strategies - for example, the Local Transport Plan.

Monitoring

10.6. The purpose of monitoring is twofold, as monitoring needs to consider both beneficial and adverse effects. Firstly, monitoring is critical to measure the actual significant effects of implementing the Core Strategy DPD policies and measure contribution towards achievement of desired objectives. Secondly, it assists in identification of unforeseen adverse effects and the need to undertake appropriate remedial action. Monitoring should aim to answer questions such as:

- Are the policies contributing towards the plans vision and objectives, as well as the SA objectives and sustainable development as predicted?
- Are mitigation measures performing as well as expected?
- Are there any adverse effects? Are these within acceptable limits, or is remedial action desirable?
10.7. The approach taken to monitoring should be objective and target led. It is not necessary to monitor everything, or monitor an effect indefinitely; instead monitoring should be focused on significant effects. Monitoring should involve measuring performance against indicators which may establish a causal link between implementation of the plan and the likely significant effects being monitored.

10.8. In addition it may be beneficial for monitoring requirements to build on existing monitoring systems (such as the SA monitoring framework) in order to reinforce links and ensure efficiency within planning processes. Gaps in existing information will be identified so that consideration might be given to how these could be addressed in the longer term.

10.9. There is a specific requirement for the implementation of the MWDF and its individual components to be monitored. The most appropriate vehicle for this is the MWDF AMR, produced each December. Monitoring is therefore to be undertaken on an annual basis (unless otherwise specified) in line with the AMR.

10.10. The plan period for the MWDF is by calendar year of January to December rather than by April to March. This is largely because monitoring of minerals production by the EMRAWP is on this basis.

10.11. The monitoring framework for the Core Strategy is set out in Table CS5 below.

Table CS5: Core Strategy monitoring framework

<table>
<thead>
<tr>
<th>Core Strategy policy and link to objectives</th>
<th>Key indicator(s)</th>
<th>Target</th>
<th>Implementation partners</th>
<th>Trigger point for correction and / or mitigation measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy for waste management and disposal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Policy CS1: Northamptonshire’s waste management capacity</td>
<td>Annual arisings and management capacity for different waste streams.</td>
<td>Meet 100% of capacity by 2016 and any previous gap in provision made up.</td>
<td>Waste industry, NCC as WDA, Environment Agency, DEFRA</td>
<td>Trajectory shows by 2013 that target unlikely to be met by 2016.</td>
</tr>
<tr>
<td>Policy CS2: Spatial strategy for waste management</td>
<td>Percentage of planning applications for waste management in conformity with spatial strategy.</td>
<td>100%</td>
<td>Waste industry, NCC as WDA</td>
<td>Two or more approvals (within the plan period) not in line with spatial strategy.</td>
</tr>
<tr>
<td>Policy CS3: Strategy for waste disposal</td>
<td>Percentage of waste disposal applications consistent with the strategy. Landfill capacity</td>
<td>100%</td>
<td>Waste industry, Minerals industry, Waste industry</td>
<td>Any approval not consistent with strategy. Estimate by 2012 that landfill capacity will run out by 2016.</td>
</tr>
</tbody>
</table>

<p>| Strategy for mineral extraction | | | | |
| Policy CS4: Spatial strategy for mineral extraction | Percentage of permissions consistent with spatial strategy. | 100% | Minerals industry | Two or more approvals not in line with spatial strategy within the plan period. |</p>
<table>
<thead>
<tr>
<th>Core Strategy policy and link to objectives</th>
<th>Key indicator(s)</th>
<th>Target</th>
<th>Implementation partners</th>
<th>Trigger point for correction and / or mitigation measures</th>
</tr>
</thead>
</table>
| **Policy CS5:** Providing for an adequate supply of aggregates
Contributes towards Objectives 1, 2, 3 & 4. | Amount of annual aggregate produced in line with annual provision in Core Strategy.
Size of landbanks for sand and gravel and crushed rock. | Sand and gravel production of 0.97 million per annum. Crushed rock production of 0.39 million per annum. Maintain seven year landbank for sand and gravel; ten years for crushed rock. | - Minerals industry
- Minerals industry
- EMRAWP | Provision undershoots by 10% or more over a two year period.
Landbank falls below target for more than two years. |
| **Policy CS6:** Building and roofing stone
Contributes towards Objective 9. | Percentage of permissions granted meeting policy criteria. | 100% | - Minerals industry | Two or more approvals not meeting policy criteria within the plan period. |
| **Other core development planning considerations** | | | | |
| **Policy CS7:** Sustainable design and use of resources
Contributes towards Objectives 6, 9 & 10. | Percentage of new built development utilising recycled & secondary aggregates. | Increase of 10% per annum. | - Development industry
- Local planning authorities
- Minerals industry
- Waste industry | No increase per annum. |
| **Policy CS8:** Co-location of waste management facilities with new development
Contributes towards Objectives 1, 2, 3 & 5. | Number of new development with a neighbourhood waste management facility. | All proposals contain a neighbourhood waste facility. | - Development industry
- Local planning authorities
- Waste industry | Two or more relevant approvals (within the plan period) do not contain a neighbourhood waste management facility. |
| **Policy CS9:** Encouraging sustainable transport movements
Contributes towards Objectives 1 & 2. | Number of applications containing sustainable transport assessment. | All | - Minerals industry
- Waste industry | Two or more approvals (within the plan period) have not had a sustainable transport assessment. |
| **Policy CS10:** Minerals Safeguarding Areas
Contributes towards Objective 7. | Number of proposals materially having an adverse effect on a safeguarded mineral resource. | No sterilisation of mineral resource. | - Development industry
- Local planning authorities
- Minerals industry | Two or more approvals result in sterilisation within the plan period. |
<table>
<thead>
<tr>
<th>Core Strategy policy and link to objectives</th>
<th>Key indicator(s)</th>
<th>Target</th>
<th>Implementation partners</th>
<th>Trigger point for correction and/or mitigation measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy CS11: Safeguarding waste management and minerals related development from alternative uses
Contributes towards Objectives 7 & 8.</td>
<td>Number of facilities for waste management use or for minerals processing safeguarded from development to another use.</td>
<td>All</td>
<td>- Development industry
- Local planning authorities
- Waste industry</td>
<td>More than two approved proposals (within the plan period) result in a loss of waste management facility (with no alternative provision made).</td>
</tr>
<tr>
<td>Policy CS12: Development in the vicinity of minerals and waste development
Contributes towards Objectives 7 & 8.</td>
<td>Number of waste management and minerals facilities not adversely affected by development in its vicinity.</td>
<td>No development in vicinity of a waste or minerals related use has adversely affected its operation.</td>
<td>- Development industry
- Local planning authorities
- Waste industry
- Minerals industry</td>
<td>More than two approved proposals (within the plan period) are seen to have adversely affected an operation.</td>
</tr>
<tr>
<td>Policy CS13: Restoration and after-use of minerals and waste development
Contributes towards Objectives 10 & 11.</td>
<td>Proportion of minerals and temporary waste development subject to restoration and appropriate after-use.</td>
<td>100%</td>
<td>- Minerals industry
- Waste industry</td>
<td>Any scheme approved that does not fully meet the objectives of the policy.</td>
</tr>
<tr>
<td>Policy CS14: Addressing the impact of proposed minerals and waste development
Contributes towards Objectives 10 & 12.</td>
<td>Number of minerals and waste development meeting criteria.</td>
<td>All</td>
<td>- Minerals industry
- Waste industry</td>
<td>More than two approved proposals fail to meet criteria within the plan period.</td>
</tr>
</tbody>
</table>
APPENDIX 1: REPLACEMENT OF MINERALS AND WASTE LOCAL PLAN POLICIES BY MWDF POLICIES

There is not necessarily a clear cut transfer from one Local Plan policy to a particular Core Strategy policy as the MWDF is a different type of development plan to the old local plans. Nevertheless the following schedule sets out where the intent of each Local Plan policy is now covered within the MWDF. In some cases the intent of a policy is split between different DPDs.

On the adoption of the Core Strategy, the Local Plan policies listed in Schedule A below will be superseded. When the Core Strategy and the Control and Management of Development DPDs are both adopted the Local Plan policies listed in Schedules B and C will be superseded. The Local Plan policies in Schedules D and E will require the adoption of both the Core Strategy and ‘locations’ DPDs before they will be superseded.

<table>
<thead>
<tr>
<th>Minerals Local Plan</th>
<th>Waste Local Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Local Plan policies replaced by Core Strategy policies</td>
<td></td>
</tr>
<tr>
<td>Policy 1: Landbanks</td>
<td>Policy 1: Principles for waste development</td>
</tr>
<tr>
<td>Policy 2: Supply of sand and gravel</td>
<td>Policy 3: Safeguarding of existing sites</td>
</tr>
<tr>
<td>Policy 4: Crushed rock supply</td>
<td>Policy 4: Development of local waste facilities</td>
</tr>
<tr>
<td>Policy 5: Development - related waste minimisation</td>
<td>Policy 5: The integration of neighbourhood waste facilities with other development</td>
</tr>
<tr>
<td>Policy 6: Building and roofing stone quarries</td>
<td>Policy 16: Restoration, aftercare and after-use</td>
</tr>
<tr>
<td>Policy 7: Limestone for agricultural purposes</td>
<td>Policy 17: Waste transfer, recovery and recycling</td>
</tr>
<tr>
<td>Policy 10: Safeguarding mineral resources</td>
<td>Policy 18: Composting</td>
</tr>
<tr>
<td>Policy 11: Sustainable transportation of minerals</td>
<td>Policy 19: Anaerobic digestion</td>
</tr>
<tr>
<td>Policy 12: Mineral development outside permitted or allocated sites</td>
<td>Policy 20: Waste to energy recovery</td>
</tr>
<tr>
<td>Policy 14: Reclamation</td>
<td>Policy 21: Non-energy recovery incineration</td>
</tr>
<tr>
<td>Policy 15: Buffer zones</td>
<td>Policy 22: Landfill / landraising</td>
</tr>
<tr>
<td>Policy 34: Review of old mineral permissions</td>
<td>Policy 23: Agricultural improvement and engineering works</td>
</tr>
<tr>
<td>Policy 35: Prohibition orders</td>
<td>Policy 24: Sewage and water treatment</td>
</tr>
<tr>
<td>Policy 25: Rights of way</td>
<td>Policy 25: Landspreading</td>
</tr>
<tr>
<td>Policy 26: Water resources</td>
<td></td>
</tr>
</tbody>
</table>

<p>| B: Local Plan Policies replaced by a combination of Core Strategy and Control and Management of Development DPD Policies | |
| Policy 6: Building and roofing stone quarries | Policy 16: Restoration, aftercare and after-use |
| Policy 7: Limestone for agricultural purposes | Policy 17: Waste transfer, recovery and recycling |
| Policy 10: Safeguarding mineral resources | Policy 18: Composting |
| Policy 11: Sustainable transportation of minerals | Policy 19: Anaerobic digestion |
| Policy 12: Mineral development outside permitted or allocated sites | Policy 20: Waste to energy recovery |
| Policy 14: Reclamation | Policy 21: Non-energy recovery incineration |
| Policy 15: Buffer zones | Policy 22: Landfill / landraising |
| Policy 34: Review of old mineral permissions | Policy 23: Agricultural improvement and engineering works |
| Policy 35: Prohibition orders | Policy 24: Sewage and water treatment |
| Policy 25: Landspreading | Policy 25: Landspreading |
| Policy 13: Borrow pits | Policy 7: Design |
| Policy 16: Proposals for plant and machinery | Policy 8: Traffic and access |
| Policy 17: Retention of processing plants | Policy 9: Natural and historic environment - Local landscape character |
| Policy 18: Traffic and access | Policy 10: Natural and historic environment - National and international designations and protected species |
| Policy 19: Landscape | Policy 11: Natural and historic environment - Local designations |
| Policy 20: Designated biodiversity sites | Policy 12: Agricultural land |
| Policy 21: Protected species | Policy 13: Water resources and flooding |
| Policy 22: Habitats and features of biodiversity and geodiversity importance | Policy 14: Rights of way |
| Policy 23: Best and most versatile agricultural land | Policy 15: Local amenity |
| Policy 24: Cultural heritage | Policy 26: Planning obligations and agreements |
| Policy 25: Rights of way | Policy 27: Monitoring |
| Policy 26: Water resources | |</p>
<table>
<thead>
<tr>
<th>Minerals Local Plan</th>
<th>Waste Local Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy 27: Flood risk</td>
<td></td>
</tr>
<tr>
<td>Policy 28: Local amenity</td>
<td></td>
</tr>
<tr>
<td>Policy 29: Unstable land</td>
<td></td>
</tr>
<tr>
<td>Policy 30: Cumulative impact</td>
<td></td>
</tr>
<tr>
<td>Policy 31: Planning conditions</td>
<td></td>
</tr>
<tr>
<td>Policy 32: Planning obligations</td>
<td></td>
</tr>
<tr>
<td>Policy 33: Monitoring and enforcement</td>
<td></td>
</tr>
</tbody>
</table>

D: Local Plan Policies replaced by a combination of Core Strategy and Locations for Waste Development DPD Policies

Policy 2: The location of waste development

E: Local Plan Policies replaced by a combination of Core Strategy and Locations for Minerals Development DPD Policies

Policy 8: Refractory minerals proposals
Policy 9: Secondary and recycled materials

F: Local Plan Policies replaced by Locations for Minerals Development DPD Policies

Policy 3: Allocated sites for sand and gravel extraction
Policy 5: Allocated site for crushed rock aggregate
APPENDIX 2: GLOSSARY

A

Aftercare - The maintenance work needed to ensure that a restored landfill site does not produce environmental problems. The maintenance work is carried out after replacement of the soil to bring the land up to the required standard for cultivating, fertilising, planting, drainage and otherwise treating the land.

After use - The use to which a landfill site is put following its restoration, such as forestry, agriculture, recreation or industrial site.

Aggregate - Inert particulate matter which is suitable for use (on its own or with the addition of cement or bituminous material) in construction as concrete, mortar, finishes, road stone, asphalt, or drainage course, or for use as constructional fill or railway ballast.

Amenity - A land use which is not productive agriculture, forestry or industrial development; can include formal and informal recreation and nature conservation.

Anaerobic digestion - The biological degradation of organic wastes by micro-organisms in an oxygen-free atmosphere to produce simpler and less offensive organic compounds; commonly a carbon dioxide/methane mixture (biogas) and a stabilised residue. The biogas may be collected and used as a fuel either for electricity generation or to provide heat. This is the process that takes place within landfill and is responsible for generation of landfill gas. To date, commercial processes are mostly applied to the treatment of sewage sludge and cattle slurry.

Area of search - An area within a Mineral Working Area that has been identified as having substantial mineral reserves that may require further evaluation in order to ascertain its economic viability, and environmental acceptability.

B

Blasting - Takes place where the rock to be extracted is hard enough to warrant fracturing prior to removal and processing.

Brownfield site - Site previously used for or affected by development. It may be abandoned or in a derelict condition.

Buffer zone - A zone or area that separates waste management facilities from other land uses to safeguard local amenity.

C

Capping - A covering layer of impervious material often clay at the top of a landfill to inhibit penetration by water into the rotting waste and to inhibit the egress of methane and other landfill gases except through the engineered collection system. The restoration topsoil and sub-soils are placed above the capping layer.

Collyweston stone slate - A roofing material widely used in Northamptonshire, in adjoining areas and on important buildings further afield. Collyweston stone slates are produced by the action of frost on the so called 'log' which is derived from the lowest beds of Lincolnshire Limestone. Suitable log is only found in discrete areas the best known sources being centred historically on Collyweston village. Other sources have been documented.

Combined Heat Power scheme (CHP) - A waste treatment process which utilises waste materials as a fuel source. From which it is possible to generate both; power from gas or electricity and heat from water or steam. It is usually centred locally it can be used in either local industry or domestic settings.

Co-disposal - The landfilling of both industrial and household wastes together in such a way that benefit is derived from biodegradation processes to produce relatively non-polluting products.
Crushed rock - Hard rock, which has been quarried, fragmented and graded for use as aggregate.

Development control - The sector of land use planning that deals with the processing and enforcement of planning applications and decisions under the Town and Country Planning legislation. Each application is judged on its merits at the time of the application.

End of Life Vehicles (ELV) Directive - European directive requiring producers to limit the use of certain hazardous substances in the manufacture of new vehicles and components and promote recyclability of their vehicles and requires that ELVs are subject to de-pollution prior to dismantling.

Fill - Aggregates used in construction or land reclamation works to create new levels.

Floodplains - All land adjacent to a watercourse over which water flows in times of flood or would flow but for the presence of flood defences where they exist.

Gravel - Naturally occurring aggregates of more or less rounded rock fragments (pebbles) which are coarser than sand (i.e. 2-64 millimetres in diameter) and used as a building and construction material and in drainage work.

Groundwater - Water associated with soil or rocks below the ground surface, usually taken to mean water in the saturated zone.

Hazardous waste - If improperly handled treated or disposed of a waste that, by virtue of its composition, carries the risk of death, injury, or impairment of health, to humans or animals, the pollution of waters, or could have an unacceptable environmental impact.

Household waste recycling centre (HWRC) (also known as civic amenity sites) - HWRCs are often mistakenly called the “council tip” or “council dump”, even though they are now synonymous with recycling. They are sites operated by the County Council to which the public may deliver non-business waste and at which a range of materials (e.g. metals, paper, glass, engine oil) is recovered for recycling.

Inert fill - Aggregates or inert materials used in construction or land reclamation works to create new levels. Inert fill includes inert waste material that when buried will have no adverse effect on people or the environment and does not contain contaminants (e.g. such as combustible, putrescible, degradable, leachable, hazardous, or liquid wastes, etc).

Inert waste - Waste which will not biodegrade or decompose (or will only do so at a very slow rate). Types of materials include uncontaminated topsoil, subsoil, clay, sand, brickwork, stone, silica, and glass.

Landbanks - A stock of planning permissions sufficient to allow for extraction over a given period at an appropriate local level.

Landfill - The deposition of waste onto hollow or void space in the land, usually below the level of the surrounding land or original ground level in such a way that pollution or harm to the environment is prevented. Former mineral workings have historically been used for this purpose.
Landfill gas - A by-product from the digestion by anaerobic bacteria (rotting) of putrescible matter present in waste deposited on landfill sites. The gas is predominantly methane (65%) together with carbon dioxide (35%) and trace concentrations of a range of other vapours and gases.

Landraising - Deposition of waste above the level of the surrounding land or the original ground level. It is usually deposited onto unworked ground or onto land previously filled to the original ground level.

Landspreading - The application of solid wastes, sludges and liquid wastes to the land without the removal of the topsoil layer. This can lead to a raising of the original ground level.

N

Non-inert waste (also known as degradable or putrescible waste) - Waste which will quickly or slowly biodegrade or decompose, releasing environmental pollutants. Types of material include wood & wood products, paper, plasterboard, ash, concrete, plastic, leather, rubber, textiles, cardboard, vegetable matter, food processing wastes, sewage sludge, metals & chemical combinations thereof, coke, coal, mica, diatomaceous earth, slag, boiler scale, soap, cellulose, floor sweepings, sacks, electrical fittings & appliances, machinery, cosmetic products, tarred materials, carbon, ebonite, pottery, china, enamels, abrasives, trees, bushes, grass, flowers, and other vegetation.

M

Materials resource efficiency - The using of materials as efficiently as possible in order to: (i) minimise the total use of materials and energy; (ii) minimise the use of primary materials; (iii) minimise waste disposed of to landfill; and (iv) maximise the recycled content of materials.

Metal recovery - Recovery and bulking up facilities that concentrate on providing metals as high quality input to industry. Facilities include traditional scrapyards, car breakers.

Municipal solid waste - Municipal waste is that waste that is collected and disposed of by or on behalf of a local authority. It will generally consist of household waste, some commercial waste and waste taken to civic amenity waste collection/disposal sites by the general public. In addition, it may include road and pavement sweepings, gully emptying wastes, and some construction and demolition waste arising from local authority activities.

O

Overburden - Soil and other material that overlies a mineral deposit of economic value which must be removed in order to extract the mineral.

P

Prior treatment - Treatment (including sorting) of wastes that may be carried out either before or after acceptance to landfill installation. It however cannot be carried out as part of the landfilling operation (i.e. compaction after deposit at the landfill) as it is a requirement that the treatment has been undertaken prior to landfilling. Prior treatment should not be carried out purely for the sake of achieving a treated condition. If treatment of a waste stream does not reduce the quantity of waste landfilled or the hazards of the waste to human health or the environment then it need not be undertaken.

Public rights of way - Footpaths, bridleways, tracks and lanes used as public paths and public byways.

Pyrolysis - In pyrolysis, thermal decomposition takes place in the absence of oxygen. The energy efficiency of this process can be high but operational and high capital costs limit its economic viability.
R

Reclamation - Operations designed to return the area to an acceptable environmental condition for the resumption of the former land use or a new land use.

Recovery - The collection, reclamation and separation of materials from the waste stream.

Recovery facilities - A facility that recovers value, such as resources and energy, from waste prior to disposal, includes recycling, thermal treatment, biological treatment and composting facilities.

Recycling - The collection and separation of materials from waste and subsequent processing to produce new marketable products.

Reduction - (1) Use of technology requiring less waste generation from production; or (2) production of longer lasting products with lower pollution potential; or (3) Removing material from the waste stream, i.e. green waste used in home composts.

Reserves - Mineral deposits which have been tested to establish the quality and quantity of material present and which could be economically and technically exploited. Permitted reserves are reserves having the benefit of planning permission for extraction.

Residual arisings - Waste generated as an output resulting from waste treatment processes, for example contaminated recyclates / compost matter, non-recyclable / compostable materials, bottom ash residue, metals, APC residues, etc.

Resources - A potential mineral deposit where the quality and quantity of material present has not been tested.

Restoration - The return of land to its former or an appropriate condition using subsoil, topsoil and/or soil making material.

S

Sand and gravel - Naturally occurring materials which are formed as a result of the disintegration of rocks through weathering processes, and are transported and deposited by wind, water and ice. In Britain the most common rock types are flint, limestone, quartzite and igneous rocks. Sand and gravel are therefore derived from similar sources, and are similar in their composition, though they differ in the size of their respective particles.

Secondary aggregates - Materials that do not meet primary aggregates (e.g. sand, gravel and crushed rock) specifications in certain circumstances. Secondary aggregates can comprise recycled waste materials (e.g. demolition materials) or be produced as by-products of other processes including the production of primary aggregates (e.g. scalplings and crusher fines).

Sharp sand - Angular grains of sand which are suitable for use in concrete manufacture (also known as concreting sand).

Significant integrated facilities - Waste management facility that incorporates a range of different treatment technologies (either advanced or preliminary) on one site.

Site of Special Scientific Interest (SSSI) - A site statutorily protected for its nature conservation, geological or scientific value.

Soft sand - Sand of a generally fine rounded grain shape (also known as “building sand”). Soft sand is used in a variety of building operations, such as the manufacture of mortar, and in the manufacture of asphalt for road construction purposes.

Sterilisation - Where minerals cannot be extracted because of surface level development e.g. buildings on top of reserves which prevent access.

Sustainable waste management - Means using material resources efficiently, to cut down on the amount of waste we produce. Where waste is generated in Northamptonshire it should be dealt with in a way which contributes to the social, economic and environmental goals of Northamptonshire.
T

Transfer station - A depot where waste from collection vehicles is stored temporarily prior to carriage in bulk to a treatment or disposal site.

Treatment - Defined according to a ‘three point test: (1) a physical / thermal chemical or biological process including sorting that; (2) changes the characteristics of waste; and (3) does so in order to: reduce its volume, or reduce its hazardous nature, or facilitate its handling or enhance its recovery.

V

Void space - The capacity within a landfill and landraising available for waste, together with cover, construction material, capping engineering and restoration layers.

W

Waste - Waste is defined in circular 11/94 and in the Waste Management Licensing Regulations 1994 as ‘any substance or object which the holder discards, or intends to discard or is required to discard’ and may include production residues and some by-products.

Waste Electrical and Electronic Equipment (WEEE) Directive - Private householders will be able to return their WEEE to collection facilities free of charge. Producers will be responsible for financing the collection, treatment, recovery and users (other than private householders) for products placed in the market after 13 August 2005.

Waste management licence - Licence granted by the Environment Agency authorising treatment, keeping or disposal of any specified description of controlled waste in or on specified land by means of specified plant.

Waste minimisation - The process of reducing the quantity of waste arising and requiring processing and/or disposal.

Waste to energy recovery - The treatment of waste to create heat that can be used directly or to generate electricity or some other form of power. (See also Combined Heat and Power).

Water table - The level of water below the surface of the ground in porous rocks. During wet weather the water table rises, and during dry weather it falls.
APPENDIX 3: LIST OF ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMR</td>
<td>Annual Monitoring Report</td>
</tr>
<tr>
<td>APC</td>
<td>Air Pollution Control</td>
</tr>
<tr>
<td>BGS</td>
<td>British Geological Survey</td>
</tr>
<tr>
<td>C&D</td>
<td>Construction and demolition</td>
</tr>
<tr>
<td>C&I</td>
<td>Commercial and industrial</td>
</tr>
<tr>
<td>CA</td>
<td>Civic amenity</td>
</tr>
<tr>
<td>CHP</td>
<td>Combined heat and power</td>
</tr>
<tr>
<td>DEFRA</td>
<td>Department for Environment, Food and Rural Affairs</td>
</tr>
<tr>
<td>DPD</td>
<td>Development Plan Document</td>
</tr>
<tr>
<td>EA</td>
<td>Environment Agency</td>
</tr>
<tr>
<td>EEA</td>
<td>European Environment Agency</td>
</tr>
<tr>
<td>EfW</td>
<td>Energy from waste</td>
</tr>
<tr>
<td>EMRAWP</td>
<td>East Midlands Regional Aggregates Working Party</td>
</tr>
<tr>
<td>EMRA</td>
<td>East Midlands Regional Assembly</td>
</tr>
<tr>
<td>GVA</td>
<td>Gross Value Added</td>
</tr>
<tr>
<td>HRA</td>
<td>Habitats Regulations Assessment</td>
</tr>
<tr>
<td>HWRC</td>
<td>Household waste recycling centre</td>
</tr>
<tr>
<td>JMWMS</td>
<td>Joint Municipal Waste Management Strategy</td>
</tr>
<tr>
<td>LATS</td>
<td>Landfill Allowance Trading Scheme</td>
</tr>
<tr>
<td>MBT</td>
<td>Mechanical biological treatment</td>
</tr>
<tr>
<td>MCA</td>
<td>Minerals Consultation Area</td>
</tr>
<tr>
<td>MHT</td>
<td>Mechanical heat treatment</td>
</tr>
<tr>
<td>MKSM</td>
<td>Milton Keynes and South Midlands</td>
</tr>
<tr>
<td>MKSM SRS</td>
<td>Milton Keynes and South Midlands Sub-Regional Strategy</td>
</tr>
<tr>
<td>MPA</td>
<td>Mineral Planning Authority</td>
</tr>
<tr>
<td>MPG</td>
<td>Mineral Planning Guidance</td>
</tr>
<tr>
<td>MPS</td>
<td>Mineral Planning Statement</td>
</tr>
<tr>
<td>MRF</td>
<td>Material recycling facilities</td>
</tr>
<tr>
<td>MSA</td>
<td>Minerals Safeguarding Areas</td>
</tr>
<tr>
<td>MSW</td>
<td>Municipal solid waste</td>
</tr>
<tr>
<td>Mt</td>
<td>Million tonnes</td>
</tr>
<tr>
<td>MWDF</td>
<td>Minerals and Waste Development Framework</td>
</tr>
<tr>
<td>NCC</td>
<td>Northamptonshire County Council</td>
</tr>
<tr>
<td>NPS</td>
<td>National Policy Statement</td>
</tr>
</tbody>
</table>
NWP - Northamptonshire Waste Partnership
OBC - Outline business case
ODPM - Office of the Deputy Prime Minister
PFI - Private finance initiative
PPG - Planning Policy Guidance
PPS - Planning Policy Statement
pSPA - potential European Special Protection Area
RDF - Refuse derived fuel
RSS - Regional Spatial Strategy, also known as the East Midlands Regional Plan
RWS - Regional Waste Strategy
SA - Sustainability Appraisal
SCI - Statement of Community Involvement
SCS - Sustainable Community Strategy
SEA - Strategic Environmental Assessment
SEPA - Scottish Environmental Protection Agency
SPD - Supplementary Planning Document
SSSI - Site of Special Scientific Interest
t - Tonnes
tpa - Tonnes per annum
WCA - Waste Collection Authority
WDA - Waste Disposal Authority
WPA - Waste Planning Authority
WtE - Waste to Energy